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SUMMARY

This dissertation investigates the learning scenarios where a high-dimensional pa-

rameter has to be estimated from a given sample of fixed size, often smaller than the

dimension of the problem. The motivation for the questions we study comes from

real-world applications where the data is often obtained from expensive experiments

and has to be processed and analyzed efficiently.

The first part answers some open questions for the binary classification problem

in the framework of active learning. Given a random couple (X, Y ) ∈ Rd × {±1}

with unknown distribution P , the goal of binary classification is to predict a label Y

based on the observation X. The prediction rule is constructed from the observations

(Xi, Yi)
n
i=1 sampled from P . The concept of active learning can be informally char-

acterized as follows: on every iteration, the algorithm is allowed to request a label Y

for any instance X which it considers to be the most informative. The contribution

of this work consists of two parts: first, we provide the minimax lower bounds for the

performance of active learning methods. Second, we propose an active learning algo-

rithm which attains nearly optimal rates over a broad class of underlying distributions

and is adaptive with respect to the unknown parameters of the problem.

The second part of this thesis is related to sparse recovery in the framework

of dictionary learning. Let (X, Y ) be a random couple with unknown distribution

P , with X taking its values in some metric space S and Y - in a bounded subset

of R. Given a collection of functions H = {ht}t∈T mapping S to R, the goal of

dictionary learning is to construct a prediction rule for Y given by a linear(or convex)

combination of the elements of H. The problem is sparse if there exists a good

vii



prediction rule that depends on a small number of functions from H. We propose

an estimator of the unknown optimal prediction rule based on penalized empirical

risk minimization algorithm. We show that the proposed estimator is able to take

advantage of the possible sparse structure of the problem by providing probabilistic

bounds for its performance.
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CHAPTER I

INTRODUCTION

In the past decade, numerous applications created a high demand for the tools to pro-

cess and analyze high-dimensional data. As a result, new algorithms and statistical

models were introduced. One of the challenges associated with the theoretical analysis

of these methods is to develop tight non-asymptotic bounds which give performance

guarantees holding with high probability for the input of any fixed cardinality. In par-

ticular, such bounds are important when the dimension of the problem is much larger

than the amount of data available to a researcher. In general, consistent estimation

of all parameters of the system is impossible in this case, at least without additional

assumptions, such as sparsity. Another challenge originates from the problems where

one tries to minimize the amount of data used to achieve a certain goal (for example,

when the data is obtained via expensive experiments). In this case, we want to use

the available budget efficiently and to choose the most informative observations from

the given collection.

This dissertation describes two problems that are general enough to include many

nontrivial examples and at the same time admit tight non-asymptotic performance

bounds. The first problem is related to sparse recovery in the framework of dictionary

learning while the second targets some open questions in the field of active learning.

We will continue by presenting the key objects of statistical learning theory related

to the questions we study, and by introducing the necessary background. Since the

material of the following two chapters in not closely related, we are not going to

create the connection artificially and will provide separate detailed introductions for

the topics of interest in each chapter.
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1.1 Statistical framework for prediction problems

One of the main goals of statistical learning theory is to develop good models and

methods for making predictions and gaining knowledge from the data, which is as-

sumed to come from some underlying (but usually unknown) distribution. Statistical

framework happened to be very well-suited for this type of problems, since much of

the real-world data is not exact but contaminated by random noise. To the best of

our knowledge, one of the first successful attempts to place the learning problem into

the statistical “Probably Approximately Correct”(PAC) framework is the pioneering

work by L. Valiant [87]. Another breakthrough that underlies many deep results

in the field was the work of M. Talagrand on general concentration inequalities in

product spaces [82],[81]. Later, O. Bousquet, T. Klein and E. Rio [15], [47] obtained

explicit small values of constants in Talagrand’s inequality, thus expanding the range

of its applications. These concentration results, coupled with some powerful tools

from the empirical processes theory and geometric functional analysis, allow to prove

many nontrivial results.

Let S be a measurable space, T ⊂ R, and let (X, Y ) be a random couple in S×T

with unknown distribution P . The marginal distribution of X will be denoted by

Π. Usually, X is the observation (for example, a newspaper article) and Y is the

unknown quantity that has to be predicted based on X (for example, the category

of the text: politics, sports, arts, etc.). Let (X1, Y1), . . . , (Xn, Yn) be the so-called

training data consisting of n copies of (X, Y ) which are observed – in our example this

could be a collection of articles taken from the search engine output and classified

by a human. Often, the pairs are also assumed to be independent and identically

distributed; however, as we will show later in this thesis, the result can sometimes

be improved if the observations are dependent: intuitively, this happens when one is

allowed to pick the most informative data from the available collection.

Our goal is to construct a good prediction rule – a measurable function f : S 7→ T –

2



based on the available training data. The quality of a prediction rule is measured in

terms of the loss function `(y, f(x)), and the associated average loss is E`(Y, f(X))

where the expectation is taken with respect to P . The popular losses include

1. the binary loss `(y, f(x)) := I {y 6= f(x)}, where I {A} is the indicator of event

A, commonly used when Y is a discrete random variable;

2. squared loss `(y, f(x)) := (y − f(x))2, used for the regression problem;

3. exponential loss `(y, f(x)) := e−yf(x), used in binary classification (meaning that

Y ∈ {±1}) as a convex majorant of the discrete loss,

among others. In what follows, we will denote by Pn the empirical distribution based

on a given sample of n training examples, Pn := 1
n

n∑
i=1

δ(Xi,Yi). Similarly, Πn will denote

the empirical measure based on the sample (X1, . . . , Xn). The integrals with respect

to P and Pn will be denoted by

Pg := Eg(X, Y ), Png :=
1

n

n∑
i=1

g(Xi, Yi).

In many cases, it is desirable to find a prediction rule f which minimizes the average

loss P`(Y, f(X)) over some class F . However, this problem cannot be solved in prac-

tice since distribution P remains unknown. Instead, in the case of iid observations,

the true average loss can be approximated by the empirical loss:

P`(Y, f(X)) ≈ Pn`(Y, f(X)),

and the hope is that the minimizer of the empirical loss is going to be “close” to the

minimizer of the true average loss, thus being a good candidate for a prediction rule.

Much of the theory is devoted to understanding how this procedure can be formalized

and how the performance of the obtained prediction rule depends on the richness of

class F and the number of observations n.

There are a lot well-written reviews and monographs on learning and pattern recog-

nition. Among many others, these are the excellent sources of information of different
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level: the classical text by V. Vapnik and A. Chervonenkis [95] (german translation of

the original russian text [92]), a more recent monograph by V. Vapnik [93], a book by

L. Devroye, L. Györfi and G. Lugosi [30] and a set of lecture notes by V. Koltchinskii

containing many recent results in the field [53].

1.2 Technical background and related results

Concentration inequalities play a crucial role in theoretical analysis of machine learn-

ing methods. The classical result of S. N. Bernstein is well-known (see [91], Lemma

2.2.9):

Theorem 1.2.1. Let X1, . . . , Xn be a sequence of independent random variables with

zero mean. Assume that |Xi| ≤ M, i = 1 . . . n almost surely and let B2
n :=

n∑
i=1

EX2
i .

Then

Pr

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−t2/2

B2
n +Mt/3

)
.

When uniform bound on Xi’s is not available (or is too large), a version of Bern-

stein’s inequality for random variables with sub exponential tails might be useful (see

[53], section A.2 and [91], Lemma 2.2.11).

Let ψ : R+ 7→ R+ be a convex nondecreasing function with ψ(0) = 0.

Definition 1.1. The Orlicz norm of a random variable η is defined via

‖η‖ψ := inf

{
C > 0 : Eψ

(
|η|
C

)
≤ 1

}
By ‖·‖ψ1 , ‖·‖ψ2 we denote the Orlicz norms for ψ1(x) := ex−1 and ψ2(x) := ex

2−1,

respectively; the following inequalities are elementary:

‖η‖ψ1 ≤
√

log 2‖η‖ψ2 , (1.2.1)

‖η2‖ψ1 = ‖η‖2
ψ2
. (1.2.2)
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Theorem 1.2.2. Let X1, . . . , Xn be a sequence of independent random variables with

zero mean. Assume that ‖X1‖ψ1 ≤ V . Then

Pr

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cmin

(
t

V
,
t2

nV 2

))
.

Next, we formulate the uniform versions of Bernstein’s inequality, along with

several related results. Let (S,B) be a measurable space and let F be a class of

functions

F 3 f : S 7→ [−1, 1].

If Z is a random process indexed by F , define ‖Z‖F := supf∈F |Z(f)|. Given a

collection of independent random variables X1, . . . , Xn, Xi ∈ S with distribution Π,

let
√
nZn(f) :=

√
n(Πn − Π)(f) =

1√
n

n∑
i=1

(f(Xi)− Ef(Xi))

be the empirical process indexed by F . Finally, let

σ2
Π(F) := sup

f∈F

(
Ef(X)2 − (Ef(X))2) .

We will always assume that σΠ(F) < ∞. The following inequalities provide an

estimate for the deviations of ‖Zn‖F from its mean. The bounds in its present form

are taken from [53].

Theorem 1.2.3 (Bousquet [15]).

Pr

(
‖Zn‖F ≥ E‖Zn‖F +

√
2t

(
σ2

Π(F) +
2√
n
E‖Zn‖F

)
+

t

3
√
n

)
≤ e−t.

Theorem 1.2.4 (Klein-Rio [47]).

Pr

(
‖Zn‖F ≤ E‖Zn‖F −

√
2t

(
σ2

Π(F) +
2√
n
E‖Zn‖F

)
− t√

n

)
≤ e−t.

We will also use a version of concentration inequality for the classes that do not

admit uniform upper bound. Given a class F : S 7→ R, let F be measurable and such

that |f(x)| ≤ F (x) for all f ∈ F all x.
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Theorem 1.2.5 (Adamczak [1]).

Pr

(
‖Zn‖F ≥ K

[
E‖Zn‖F + σP (F)

√
t+ ‖ max

1≤i≤n
F (Xi)‖ψ1

t√
n

])
≤ e−t,

Pr

(
E‖Zn‖F ≥ K

[
‖Zn‖F + σP (F)

√
t+ ‖ max

1≤i≤n
F (Xi)‖ψ1

t√
n

])
≤ e−t.

The following results provide powerful tools to bound the expected supremum

E‖Zn‖F and together with aforementioned concentration inequalities yield the es-

timates for ‖Zn‖F . Let ε1, . . . , εn be independent Rademacher random variables

(that is, Pr(εi = ±1) = 1
2
) which are also independent from X1, . . . , Xn. Define

the Rademacher process indexed by F as

Rn(f) :=
1

n

n∑
i=1

εif(Xi).

Informally, Rn(f) measures correlation between the ’random noise’ {εi}ni=1 and the

vector {f(Xi)}ni=1. It turns out that the expected supremum of empirical process

indexed by class F can be controlled in terms of expected supremum of Rn(f).

The latter can be estimated by Dudley’s entropy integral (or, more generally, by

generic chaining complexity) associated to the index set F equipped with a (random)

pseudo-metric d2
n(f, g) := 1

n

n∑
i=1

(f(Xi)− g(Xi))
2. This is possible due to the fact that,

conditionally on {Xi}ni=1, Rademacher process Rn(f) is subgaussian with respect to

dn(·, ·):

Definition 1.2. Let (T, d) be a pseudo-metric space. A random process {Y (t), t ∈ T}

is called subgaussian with respect to d if for any t, s ∈ T

Eeλ(Y (t)−Y (s)) ≤ eλ
2d2(t,s)/2, λ ∈ R.

Theorem 1.2.6 (Symmetrization inequality). For any convex function Φ : R+ 7→ R+

EΦ

(
1

2
‖Rn‖Fc

)
≤ EΦ (‖Zn‖F) ≤ EΦ (2‖Rn‖F) ,

where Fc := {f − Pf, f ∈ F}.

6



Proof. See Theorem 2.1 in [53].

For Φ(x) = x, the lower bound is usually combined with the inequality

E‖Rn‖Fc ≥ ‖Rn‖F −
sup
f∈F

Pf

√
n

.

Assume φ : R 7→ R is such that φ(0) = 0 and |φ(u)−φ(v)| ≤ |u−v|, u, v ∈ R, and let

φ ◦ F := {φ(f(·)), f ∈ F}. Then the expected supremum of a Rademacher process

indexed by φ ◦ F can be controlled by E‖Rn‖F :

Theorem 1.2.7 (Contraction inequality).

E‖Rn‖φ◦F ≤ 2E‖Rn‖F .

Proof. See Theorem 4.12 in [62].

Finally, we present Dudley’s entropy bound (for a proof and modern viewpoint,

see [80]).

Definition 1.3 (Covering number). Let (T, d) be totally bounded. The covering num-

ber N(T, d, ε) is the minimal number of balls of radius ε (with respect to d) needed to

cover T .

Note that the centers of the balls in the definition above do not have to be in T .

Theorem 1.2.8 (Dudley’s entropy bound). Let D(T ) be the diameter of (T, d). If

Y (t) is subgaussian with respect to d, then for some absolute constant C > 0

E sup
t∈T

Y (t) ≤ C

D(T )∫
0

√
logN(T, d, ε)dε.

1.2.1 Lower bounds for the minimax risk

Below, we will mention a general result that allows to obtain lower bounds for the

risk in many statistical applications.

7



Theorem 1.2.9. Let Σ be a class of models, d : Σ×Σ 7→ R - the pseudo-metric and

{Pf , f ∈ Σ} – a collection of probability measures associated with Σ. Assume there

exists a subset {f0, . . . , fM} of Σ such that

1. d(fi, fj) ≥ 2s > 0 for all 0 ≤ i < j ≤M ;

2. Pfj � Pf0 for every 1 ≤ j ≤M ;

3. 1
M

M∑
j=1

KL(Pfj , Pf0) ≤ α logM, 0 < α < 1
8
.

Then

inf
f̂

sup
f∈Σ

Pf

(
d(f̂ , f) ≥ s

)
≥

√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
,

where the infimum is taken over all possible estimators of f based on a sample from

Pf and KL(·, ·) is the Kullback-Leibler divergence.

Proof. For a proof and examples of applications, see Theorem 2.5 in [85].

The result above is often combined with a combinatorial lemma known as Gilbert-

Varshamov bound:

Proposition 1.2.10 (Gilbert-Varshamov). For m ≥ 8, there exists

{σ0, . . . , σM} ⊂ {−1, 1}m

such that σ0 = {1, 1, . . . , 1}, ρ(σi, σj) ≥ m
8
∀ 0 ≤ i < k ≤ M and M ≥ 2m/8 where ρ

stands for the Hamming distance ρ(σ, ν) :=
m∑
i=1

I {σi 6= νi}.

Proof. See [85], Lemma 2.9.
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CHAPTER II

ACTIVE LEARNING

2.1 Introduction

In most prediction problems, the main and only source of information is the training

data obtained through a sequence of experiments. It is convenient to represent each

datapoint as a pair (Instance, Label), where ’Label’ often takes only finitely many

values.

It was observed that in some cases, the cost related to the process of collecting the

data is associated with the labels, while the pool of instances itself is almost unlim-

ited. Examples include speech recognition which requires trained linguists for careful

annotation; document and media classification which requires a human to provide a

correct label to each object, etc. (see [78] for an excellent review and discussion of

the applications). However, in most cases there is freedom to allocate the resources

– namely, one can choose the data given to the expert for further processing and

labeling. This motivated researchers to start the investigation of the learning strate-

gies that are able to mimic this heuristic framework. Intuitively, an effective learning

strategy should decide which instances are the most informative for a present task,

thus omitting the ’less informative’ observations.

The most popular, and probably the simplest model for active learning methods is the

binary classification problem where the label is allowed to take only two values ±1,

and we will focus our attention on this particular case. Note that multi-label classifi-

cation can often be reduced to binary classification, so it is important to understand

the potential improvements in the easiest case. In particular, such improvements are

possible due to the fact that for the binary classification problem, it is enough to
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know only the sign of the regression function. If one wants to estimate the whole

regression curve (for example, with respect to the L2 loss), then active learning might

not be helpful. In particular, a negative result of R. Nowak, R. Castro and R. Wil-

lett (Theorem 3 in [24]) implies the following: if we only assume that the regression

function is smooth (namely, belongs to some Hölder ball, see Definition 2.1), active

learning does not give any advantage (in the minimax sense) over passive learning.

There are several popular active learning frameworks which we mention below. The

so-called Selective Sampling scenario is closest to our setting. In this case, the ob-

servations are assumed to come independently, one at a time, from some underlying

distribution, and the algorithm decides whether the corresponding label should be

requested or not. This approach goes back to the works of D. Cohn, L. Atlas, R.

Ladner et al.[26],[25]. Another approach is the so-called Learning with Membership

Queries, where an algorithm can request the label for any observation, see [2],[3].

This framework is often more restrictive, but does not necessarily give advantage

over Selective Sampling (for example, under some assumptions on the underlying de-

sign distribution). Interesting theoretical results for these scenarios were obtained

in [35], where authors propose and analyze the so-called Query-By-Committee algo-

rithm. Another popular approach is Pool-Based active learning, where an algorithm

sequentially selects the data from some large but fixed pool of observations [64]. This

framework fits many practical applications, see [84],[79].

Most of the existing theoretical analysis was focusing on the noiseless case, thus mak-

ing an assumption that there exists a perfect classifier that always predicts the data

correctly, and that the training labels come from this classifier. The development

and analysis of noise-robust algorithms turned out to be a harder problem. One of

the first methods that performs well in the agnostic (noisy) setting is the A2(agnostic

active) algorithm by M.-F. Balcan, A. Beygelzimer, and J. Langford [6], and the

margin-based active learning algorithm [8] for the case of linear separators. Another
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approach was suggested by S. Dasgupta, D. Hsu and C. Monteleoni [28]. S. Hanneke

developed new tools for theoretical analysis of active learning methods, see [41], and

the further improvements by S.Hanneke, M.-F. Balcan and J. Wortman [7], [42], and

V. Koltchinskii [52]. It was discovered that in some cases the generalization error of

a resulting classifier can converge to zero exponentially fast with respect to its label

complexity (while the best rate for passive learning is usually polynomial with respect

to the cardinality of the training data set). Most of the aforementioned methods are

based on empirical risk minimization subroutine, and the high-level idea is as follows:

1. Obtain the empirical risk minimizer f̂ ;

2. Take a ’ball’ B(f̂ , δ) around f̂ that contains the best possible classifier f∗ with

high probability;

3. Find the ’disagreement set’ associated to B(f̂ , δ) defined as

{
x : ∃f1, f2 ∈ B(f̂ , δ) s.t. sign f1(x) 6= sign f2(x)

}
– in some cases, this set is going to be much smaller than the initial domain of

observations;

4. Obtain the next group of labeled observations supported on the disagreement

set and go back to step 1.

Under some natural assumptions these methods give provable significant improve-

ments over passive learning, and, moreover, are adaptive with respect to the unknown

parameters of the problem. On the other hand, empirical risk minimization that is at

the core of these methods is done with respect to the binary loss. For such non-convex

problems, it is very hard to find the minimizers over nontrivial hypotheses classes,

so the practical use of the methods is limited. Other practically successful methods,

such as Support Vector Machine Active Learning [84] have not yet been supported
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by theoretical justification, to the best of our knowledge. A different approach in

the noisy setting, based on learning the one-dimensional threshold classifiers, was

proposed by R. Castro and R. Nowak [23]. The viewpoint and the methods of this

work are closer to our investigation compared to previously mentioned results, so we

will give more details below. We just mention that the algorithm developed in [23]

can be effectively implemented, but it is not adaptive and requires some unknown

parameters of the distribution as an input. One of the goals of the present work was

to construct active learning methods that are computationally tractable and at the

same time are adaptive over a large class of underlying distributions.

2.2 Probabilistic framework

Let (X, Y ) ∈ [0, 1]d × {−1, 1} be a random couple with unknown distribution P .

The marginal distribution of design variable X will be denoted by Π. Let η(x) :=

E(Y |X = x) be the regression function. The level set
{
x ∈ [0, 1]d : η(x) = 0

}
is

called the decision boundary. The goal of binary classification is to predict a label

Y based on the observation X. Prediction is based on a classifier - a measurable

function f : [0, 1]d 7→ {−1, 1}. The quality of a classifier is measured in terms of its

generalization error, R(f) = Pr (Y 6= f(X)). It is well-known, and intuitively clear,

that the best possible classifier is the so-called Bayes classifier g∗(x) := sign η(x).

The situation when active learning methods outperform passive algorithms might

occur when the so-called Tsybakov’s low noise assumption [69],[86] is satisfied: there

exist constants K, γ > 0 such that

∀ t > 0, Π(x : |η(x)| ≤ t) ≤ Ktγ. (2.2.1)

This assumption provides a convenient way to characterize the noise level of the prob-

lem and will play a crucial role in our investigation. The majority of the previous work

in the field was done under standard complexity assumptions on the set of possible

classifiers(such as polynomial growth of the covering numbers). Castro and Nowak
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[23] derived their results under the regularity conditions on the decision boundary

and the noise assumption which is slightly more restrictive than (2.2.1). Essentially,

they proved that if the decision boundary is a graph of the Hölder smooth function

g ∈ Σ(β,K, [0, 1]d−1) (see Section 2.3 for definitions) and the noise assumption is sat-

isfied with γ > 0, then the minimax lower bound for the expected excess risk of the ac-

tive classifier is of order N−
β(1+γ)

2β+γ(d−1) and the upper bound is O
(

(N/ logN)−
β(1+γ)

2β+γ(d−1)

)
,

where N is the label budget. However, construction of the classifier that achieves an

upper bound assumes β and γ to be known.

In this thesis, we consider the problem of active learning under classical nonpara-

metric assumptions on the regression function – namely, we assume that it belongs

to a certain Hölder class Σ(β,K, [0, 1]d) and satisfies the low noise condition (2.2.1)

with some positive γ.

Remark. Note that our assumption is different from the framework in [23] where

smoothness condition was imposed on the level set {x : η(x) = 0} and not on η itself.

Under similar assumptions on regularity of the regression function, A. Tsybakov

and J.-Y. Audibert [5] showed that plug-in classifiers attain optimal rates in the pas-

sive learning framework. In particular, their results imply that the expected excess

risk of a classifier ĝ = sign η̂ is bounded above by C ·N−
β(1+γ)
2β+d (which is the optimal

rate), where η̂ is the local polynomial estimator of the regression function and N is

the size of the training data set (their construction of an estimator η̂ assumes β to

be known). We were able to partially extend this claim to the case of active learning:

first, we obtain minimax lower bounds for the excess risk of an active classifier in

terms of its label complexity. Second, we propose a new algorithm that is based on

plug-in classifiers, attains almost optimal rates over a broad class of distributions and

possesses adaptivity with respect to β, γ (within the certain range of these parame-

ters).
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The rest of the chapter is organized as follows: the next section introduces remain-

ing notations and specifies the main assumptions. This is followed by a qualitative

description of our learning algorithm. The second part contains the statements and

proofs of our main results - upper and minimax lower bounds for the excess risk.

2.3 Notations and main assumptions

Our active learning framework is governed by the following rules:

1. Observations are sampled sequentially: Xk is sampled from the modified distri-

bution Π̂k that depends on (X1, Y1), . . . , (Xk−1, Yk−1).

2. Yk is sampled from the conditional distribution PY |X(·|X = x). Labels are

conditionally independent given the feature vectors Xi, i ≤ n.

Usually, the distribution Π̂k is supported on a set where classification is difficult.

Given the probability measure Q on S × {−1, 1}, we denote the integral with

respect to this measure by Qg :=
∫
gdQ. Let F be a class of bounded, measurable

functions. The risk and the excess risk of f ∈ F with respect to the measure Q are

defined by

RQ(f) := QIy 6=sign f(x)

EQ(f) := RQ(f)− inf
g∈F

RQ(g),

where IA is the indicator of event A. We will omit the subindex Q when the under-

lying measure is clear from the context. Recall that we denoted the distribution of

(X, Y ) by P . The minimal possible risk with respect to P is

R∗ = inf
g:S 7→[−1,1]

Pr (Y 6= sign g(X)) ,

where the infimum is taken over all measurable functions. It is well known that it is

attained for any g such that sign g(x) = sign η(x) Π - a.s. Given g ∈ F , A ∈ B, δ > 0,
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define

F∞,A(g; δ) := {f ∈ F : ‖f − g‖∞,A ≤ δ} ,

where ‖f − g‖∞,A = sup
x∈A
|f(x)− g(x)|. For A ∈ B, define the function class

F|A := {f |A, f ∈ F} ,

where f |A(x) := f(x)IA(x).

Let B > 0.

Definition 2.1. We say that g : Rd 7→ R belongs to Σ(β,B, [0, 1]d), the (β,B, [0, 1]d)

- Hölder class of functions, if g is bβc times continuously differentiable and for all

x, x1 ∈ [0, 1]d satisfies

|g(x1)− Tx(x1)| ≤ B‖x− x1‖β∞,

where Tx is the Taylor polynomial of degree bβc of g at the point x.

Definition 2.2. P(β, γ) is the class of probability distributions on [0, 1]d×{−1,+1}

with the following properties:

1. There exisits K > 0 such that ∀ t > 0, Π(x : |η(x)| ≤ t) ≤ Ktγ;

2. η(x) ∈ Σ(β,B, [0, 1]d).

Remark: note that η(x) can be defined arbitrarily on the sets of measure zero

(with respect to Π), and we only ask for the existence of one smooth representative.

We do not mention the dependence of P(β, γ) on the fixed constants B,K explicitly,

but this should not cause any uncertainty.

Finally, let us define P∗U(β, γ) and PU(β, γ), the subclasses of P(β, γ), by imposing

two additional assumptions. Along with the formal descriptions of these assumptions,

we shall try to provide some motivation behind them. The first condition is related

to the marginal distribution Π. For an integer M ≥ 1, let

GM :=

{(
k1

M
, . . . ,

kd
M

)
, ki = 1 . . .M, i = 1 . . . d

}
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be the regular grid on the unit cube [0, 1]d with mesh size M−1. It naturally defines

a partition into a set of Md open cubes Ri, i = 1 . . .Md with edges of length M−1

and vertices in GM . Below, we consider the nested sequence of grids {G2m , m ≥ 1}

and corresponding dyadic partitions {H2m , m ≥ 1} of the unit cube.

Definition 2.3. We will say that Π is (u1, u2) – regular if there exists m ≥ 1 such

that Π is supported on the union of elements of {H2m} and is absolutely continuous

with respect to Lebesgue measure, with a density p(x) such that ∀x ∈ supp(Π),

u1 ≤ p(x) ≤ u2,

where 0 < u1 ≤ u2 <∞.

Assumption 2.1. Π is (u1, u2) - regular.

Let us mention that our definition of regularity is somewhat restrictive; slightly

more general conditions are possible at the price of more technical statements and

details. We believe that small benefits from imposing a weaker assumption do not

justify the losses in the clarity of exposition. For most of the chapter, the reader might

think of Π as being uniform on [0, 1]d( however, we need slightly more complicated

marginal to construct the minimax lower bounds for the excess risk).

It is known that estimation of regression function in sup-norm is sensitive to the

geometry of design distribution, mainly because the quality of estimation depends on

the local amount of data at every point; conditions similar to our Assumption 2.1 were

used in the previous works where this problem appeared, for example, strong density

assumption in [4] and Assumption D in [37]. A useful characteristic of (u1, u2) -

regular distribution Π is that this property remains valid for conditional distributions

ΠA(dx) = Π(dx|A) for certain subsets A of the unit cube. This fact fits our active

learning framework particularly well.

Definition 2.4. We say that Q belongs to PU(β, γ) if Q ∈ P(β, γ) and Assumption

2.1 is satisfied for some u1, u2.
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The second assumption is crucial in derivation of the upper bounds. First, let us

introduce the family of piecewise–polynomial functions that is used to construct the

estimators of η(x). Given two nonnegative integers r and m, let

F rm :=

f =
2dm∑
i=1

qi(x1, . . . , xd)IRi

 , (2.3.1)

whereHm =
{
Ri, 1 ≤ i ≤ 2dm

}
is the dyadic partition of the unit cube and qi(x1, . . . , xd)

are the polynomials of degree at most r in d variables. For example, when r = 0, F0
m

can be viewed as the linear span of first 2dm Haar basis functions on [0, 1]d. Note that

{F rm, m ≥ 1} is a nested family, which is usually a desirable property for statistical

model selection procedures. By η̄m(x) we denote the L2(Π) - projection of regression

function η(x) onto F rm. We explain the motivation behind this choice of estimators

and discuss the approximation properties of F rm in Section 2.3.1 below.

Let η ∈ Σ(β,B, [0, 1]d) for some 0 < β ≤ r + 1.

Assumption 2.2. Assume one of the following two conditions holds:

1. η(x) belongs to F rm0
for some m0 ≥ 1;

2. There exists B2 := B2(η,Π) > 0 such that for all m ≥ 1 the following holds

true:

‖η − η̄m‖∞,supp(Π) ≥ B22−βm.

Finally, we define P∗U(β, γ):

Definition 2.5. We say that Q belongs to P∗U(β, γ) if Q ∈ PU(β, γ) and Assumption

2.2 is satisfied.

Appearance of Assumption 2.2 is motivated by the structure of our learning algo-

rithm – namely, it is based on adaptive confidence bands for the regression function.
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Nonparametric confidence bands form a big topic in statistical literature, and the re-

view of this subject is not our goal. We just mention that it is impossible to construct

adaptive confidence bands of optimal size over the whole
⋃

0<β≤r+1

Σ
(
β,K, [0, 1]d

)
. The

subject is discussed in details in [68, 40], among others. Assumption 2.2 plays an im-

portant role in controlling the bias of the estimator as can be seen from the proof of

Theorems 2.5.6, 2.6.2 below. We continue the discussion of Assumption 2.2 in Sec-

tion 2.5.4 and provide explicit examples of functions satisfying this assumption (for

example, it will be shown that all sufficiently smooth functions satisfy Assumption

2.2).

2.3.1 Comparison Inequalities

Before proceeding with the main results, let us recall the well-known connections

between the binary risk and the ‖ · ‖∞, ‖ · ‖L2(Π) - norm risks:

Proposition 2.3.1. Under the low noise assumption,

RP (f)−R∗ ≤ D1‖(f − η)I {sign f 6= sign η} ‖1+γ
∞ ; (2.3.2)

RP (f)−R∗ ≤ D2‖(f − η)I {sign f 6= sign η} ‖
2(1+γ)

2+γ

L2(Π) ; (2.3.3)

RP (f)−R∗ ≥ D3Π(sign f 6= sign η)
1+γ
γ . (2.3.4)

Proof. For (2.3.2) and (2.3.3), see [4], Lemmas 5.1 and 5.2 respectively, and for

(2.3.4)—see [53], Lemma 5.2.

2.4 Learning algorithm: the first look

We proceed by giving a brief description of our learning algorithm, since several

definitions appear naturally in this context. First, let us emphasize that the marginal

distribution Π is assumed to be known to the learner. This is not a restriction, since

we are not limited in the use of unlabeled data and Π can be estimated to any

desired accuracy. Our construction is based on so-called plug-in classifiers of the
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form f̂(·) = sign η̂(·), where η̂ is a piecewise-polynomial estimator of the regression

function. As we have already mentioned above, it was shown in [4] that in the

passive learning framework plug-in classifiers provide optimal rate of convergence for

the excess risk of order N−
β(1+γ)
2β+d , with η̂ being the local polynomial estimator.

Our active learning algorithm iteratively improves the classifier by constructing

shrinking confidence bands for the regression function. On every step k, the piecewise-

polynomial estimator η̂k is obtained via the model selection procedure which allows

adaptation to the unknown smoothness(for Hölder exponent ≤ r+ 1). The estimator

is further used to construct a confidence band F̂k for η(x). The active set associated

with F̂k is defined as

Âk = A(F̂k) :=
{
x ∈ supp(Π) : ∃f1, f2 ∈ F̂k, sign f1(x) 6= sign f2(x)

}
.

Clearly, this is the set where the confidence band crosses zero level and where clas-

sification is potentially difficult. Âk serves as a support of the modified distribution

Π̂k+1: on step k + 1, label Y is requested only for observations X ∈ Âk, forcing the

labeled data to concentrate in the domain where higher precision is needed. This

allows one to obtain a tighter confidence band for the regression function restricted

to the active set. Since Âk approaches the decision boundary, its size is controlled by

the low noise assumption. The algorithm does not require a priori knowledge of the

noise and regularity parameters, being adaptive for γ > 0, 0 < β ≤ r + 1. See Figure

1 for graphical illustration. Further details are given in Section 2.6.2.

2.5 Approximation and estimation by piecewise–polynomial
functions

In this section, we continue the discussion of classes F rm introduced in Section 2.3

(see (2.3.1)) and give some examples related to Assumption 2.2. We also introduce

a piecewise–polynomial estimator of the regression function and discuss its concen-

tration properties relative to ‖ · ‖∞ norm. Polynomial estimators are very common
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Figure 1: Active Learning Algorithm

in statistical literature on regression and density estimation due to their effective-

ness and simplicity; most popular examples include B-splines and Bartle-Lemarié

wavelets. In many cases it is desirable to construct a smooth estimator(for example,

when it is known that the parameter of interest is smooth). However, our case is

different in several aspects: due to the nature of the learning algorithm, the design

distribution changes on every step and is often supported on a set with several con-

nected components, so that using a globally smooth estimator does not necessarily

give an advantage. It turns out that approximation by piecewise–polynomial func-

tions better suits our goals, providing a simple and well-behaved estimator(which is

only piecewise-smooth, however). In what follows, we often rely on the fact that the

design distribution Π is known to the learner. In particular, we are able to construct

L2(Π)–orthonormal bases. It is possible to relax this condition by estimating all in-

volved quantities to desired accuracy, but we omit these details to avoid deviations

from our main exposition.

We proceed with a discussion of approximation properties of F rm.

2.5.1 Approximation by piecewise–polynomial functions

It is a well known fact that the dimension of the space of polynomials in d variables

of degree at most r on the unit cube is Dd,r :=
(
d+r
r

)
. This immediately implies
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that dimF rm = 2dmDd,r. Let φ1, . . . , φl, l ≤ 2dmDd,r be any L2(Π) - orthonormal

basis of F rm such that each φi is supported on a single dyadic cube Rj, j = 1 . . . 2dm.

A basis with required properties can be easily constructed as follows: take Rj such

that Rj ∩ supp(Π) 6= ∅. Let φj,1, . . . , φj,Dd,r be the L2(Π)–orthonormal basis of the

restriction of F rm to Rj. The required basis of F rm is just the union of these bases over

all j.

Let Projm be the L2(Π)–projector on F rm.

Proposition 2.5.1. There exists a constant C that depends on Π, r, d but not on m

such that for all Π-measurable, bounded f : [0, 1]d 7→ R we have

‖Projm(f)‖∞,supp(Π) ≤ C‖f‖∞,supp(Π).

Proof. Let fi := f · IRi be the restriction of f on the cube Ri, so that

f =
∑

i:Ri∩supp(Π)6=∅

fi.

Note that, due to the special structure of F rm, Projm(fi) = (Projm(f))i, so it is enough

to prove the claim for every fi, with a constant C independent of i.

Let Prd be the space of polynomials of degree at most r on [0, 1]d, and assume that µ is

the uniform distribution on a subset S ⊂ [0, 1]d given by a union of dyadic cubes with

edge length bounded from below by 2−m0 . Since Prd is a finite dimensional subspace,

for any q ∈ Prd

‖q‖∞,S ≤ C(µ, d, r)‖q‖L2(µ).

Note that the bound can be made uniform over all µ with described properties(since

there are only finitely many candidates), with a constant C depending on m0, d, r.

Also, the same estimate clearly holds with [0, 1]d replaced by any cube in Rd since

it can be transformed into the unit cube by a composition of shifts, dilations and

rotations.

Going back to our problem, consider a dyadic cube Ri with edge length 2−m such
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that Ri ∩ supp(Π) 6= ∅. Since, by Assumption 2.1, R ∩ supp(Π) is a union of finitely

many dyadic cubes, the previous argument implies

‖Projm(fi)‖∞ ≤
C(Π, d, r)

λ (supp(Π) ∩Ri)
‖Projm(fi)‖L2(λ), (2.5.1)

where λ is the Lebesgue measure on supp(Π) ∩ Ri and the constant C(Π, d, r) is

independent from i. Recalling Assumption 2.1 once again, we have

‖Projm(fi)‖L2(λ) ≤
1

u1

‖Projm(fi)‖L2(Π) ≤
1

u1

‖fi‖L2(Π) ≤

≤ Π(Ri)

u1

‖fi‖∞,supp(Π)∩Ri ,

where we used the fact that Projm is the projection, hence does not increase the norm.

Together with (2.5.1), this gives

‖Projm(fi)‖∞ ≤
C(Π, d, r)

λ (supp(Π) ∩Ri)

Π(Ri)

u1

‖fi‖∞,supp(Π)∩Ri ≤

≤ u2

u1

C(Π, d, r)‖fi‖∞,supp(Π)∩Ri

where we used that Π(Ri)
λ(supp(Π)∩Ri) ≤ u2 by Assumption 2.1. Together with the initial

observations, this completes the proof.

The following corollary is straightforward(it is known as a ’Lebesgue lemma’ in

the approximation theory).

Corollary 2.5.2. Let C be as in Proposition 2.5.1. Then for any bounded Π-

measurable f we have

‖f − Projmf‖∞,supp(Π) ≤ (C + 1) inf
g∈Frm

‖f − g‖∞,supp(Π).

Proof. For any g ∈ F rm we have

‖f − Projmf‖∞,supp(Π) ≤ ‖f − g‖∞,supp(Π) + ‖g − Projmf‖∞,supp(Π) =

= ‖f − g‖∞,supp(Π) + ‖Projm(g − f)‖∞,supp(Π) ≤

≤ ‖f − g‖∞,supp(Π) + C‖f − g‖∞,supp(Π).
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A consequence of the previous results is the following important fact:

Corollary 2.5.3. Assume f ∈ Σ(β,B, [0, 1]d) for β ≤ r + 1. Then

‖f − Projmf‖∞,supp(Π) ≤ B(C + 1)2−βm,

where C is a constant from Proposition 2.5.1.

Remark 1. In what follows, we will denote B1 := B(C + 1), where B and C are

as defined above.

Proof. The claim follows from Definition 2.1 and Corollary 2.5.2.

Remark 2. It is also possible to prove similar approximation results with a dif-

ferent approach: namely, one could observe that the kernel k(x, y) :=
Dd,r∑
j=1

φj(x)φj(y)

reproduces polynomials up to degree r Π–almost everywhere, and use this fact to-

gether with Taylor expansion to prove the approximation bound.

2.5.2 Estimation of piecewise–polynomial functions

This section discusses the random error that occurs when estimating a function from

the noisy data. Our goal is to show that the piecewise-polynomial projection estima-

tor concentrates around its expectation in sup-norm. Let Bm be the sigma-algebra

generated by the dyadic cubes Rj, 1 ≤ j ≤ 2dm forming the partition of [0, 1]d. Given

A ∈ Bm with AΠ := A ∩ supp(Π) 6= ∅, define

Π̂A(dx) := Π(dx|x ∈ AΠ).

Moreover, set dm,A := dim
(
F rm
∣∣
AΠ

)
. Let (Xi, Yi), i ≤ N be iid observations with

Xi ∼ Π̂A(dx) and m ≥ 1 be the resolution level. Let ΦA =
{
φ1, . . . , φdm,A

}
⊂ F rm

be the L2(Π)–orthonormal basis of F rm
∣∣
AΠ

, such that each φi is supported on a single

dyadic cube R = R(φi) with edge length 2−m. It is easy to see that in this case{
φ1

√
Π(A), . . . , φdm,A

√
Π(A)

}
is the L2(Π̂A)–orthonormal basis of F rm

∣∣
AΠ

.
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Next, we introduce an estimator of the regression function on the set AΠ. Define the

empirical Fourier coefficients by

α̂i :=
1

N

N∑
j=1

Yj
√

Π(A)φi(Xj)

and the estimator η̂m,A by

η̂m,A(x) :=


dm,A∑
i=1

α̂i
√

Π(A)φi(x), x ∈ R for some R ∩ AΠ 6= 0,

0, else.

(2.5.2)

Here, R is a dyadic cube with edge length 2−m. It is easy to see that for x ∈ AΠ, the

mean of ηm,A(x) is equal to η̄m(x), where η̄m is the L2(Π)– projection of η onto F rm.

Let αi be such that η̄m
∣∣
AΠ

=
dm,A∑
i=1

αiφi.

The goal of this section is to prove the following concentration result:

Theorem 2.5.4. For any t > 0,

Pr

(
sup
x∈AΠ

|η̂m,A(x)− η̄m(x)| > C1t

√
2dmΠ(A)

N

)
≤ 2dm,A exp

 −t2/2

1 + C2t
√

2dmΠ(A)
N

 .

Remark: we will often apply the bound of the theorem for a random resolution

level m which is based on a sample independent from (Xi, Yi), i ≤ N . In this case,

the bound has to be applied conditionally on m. If it also known that m is bounded,

namely, 2dmΠ(A)
N

≤ C (as it will be in our case), then dm,A ≤ C1 · 2dmΠ(A) ≤ C2 · N

and the bound can be rewritten as

Pr

(
sup
x∈AΠ

|η̂m,A(x)− η̄m(x)| > C3 log
N

α

√
2dmΠ(A)

N

)
=

= EPr

(
sup
x∈AΠ

|η̂m,A(x)− η̄m(x)| > C3 log
N

α

√
2dmΠ(A)

N

∣∣∣∣∣m
)
≤

≤ E
(
C4N exp

(
−C5 log

N

α

))
≤ α

for C3 large enough.
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Proof. The estimate follows from Bernstein’s inequality. Let R ∈ Bm be a dyadic

cube with edge length 2−m such that R ∩ A 6= ∅ and assume x ∈ R. Without loss

of generality, let φ1, . . . , φDd,r be the basis functions that are active on R(that is, not

identically zero on R). Then

∣∣η̂m,A(x)− η̄m(x)
∣∣ =

∣∣∣∣∣∣
Dd,r∑
i=1

(α̂i
√

Π(A)− αi)φi(x)

∣∣∣∣∣∣ ≤
≤ max

i≤Dd,r
|α̂i
√

Π(A)− αi| sup
x∈R

Dd,r∑
i=1

|φi(x)| ≤ C(Π, d, r)
1√

Π(R)
max
i≤Dd,r

|α̂i
√

Π(A)− αi|,

where the last inequality follows from the equivalence of ‖ · ‖L2(Π) and ‖ · ‖∞ as in

Proposition 2.5.1.

Let ξi,j := Yjφi(Xj)Π(A) so that α̂i
√

Π(A) = 1
N

N∑
j=1

ξi,j. Note that

Eξi,j = Π(A)

∫
R

η(y)φi(y)dΠ̂A(y) = αi,

Eξ2
i,j = Π2(A)

∫
R

φ2
i (y)dΠ̂A(y) = Π(A),

|ξi,j| ≤ C(Π, d, r)
Π(A)√
Π(R)

, almost surely.

Bernstein’s inequality implies that

Pr

(∣∣α̂i√Π(A)− αi
∣∣ > t

√
Π(A)

N

)
≤ 2 exp

 −t2/2

1 + t
3

√
Π(A)
NΠ(R)

 .

The union bound over i ≤ Dd,r implies

Pr

(
1√

Π(R)
max
i≤Dd,r

∣∣α̂i√Π(A)− αi
∣∣ > t

√
Π(A)

NΠ(R)

)
≤ 2Dd,r exp

 −t2/2

1 + t
3

√
Π(A)
NΠ(R)

 .

It remains to recall that by our assumptions Π(R) ≥ u12−dm. Together with the

union bound over all R such that R ∩ A 6= ∅, this completes the proof.

2.5.3 Model selection

This section describes the tools that are needed to make our learning algorithm adap-

tive with respect to the unknown smoothness β. It turns out that if Assumption 2.2
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is satisfied, then information about smoothness can be captured from the data. Our

adaptation procedure is of “Lepski–type”[63]. The approach presented below was

partially motivated by recent strong results of Giné and Nickl [40] on adaptive con-

fidence bands in density estimation. We employ similar techniques as in the proof of

Lemma 2 in the above–cited paper. An approach that is different from presented here(

based on complexity-penalized model selection), which also allows to obtain adaptive

confidence bands, is given in [73] for the case of piecewise-constant functions.

Given a sequence of finite dimensional subspaces Gm( in our case, these are the

piecewise–polynomial functions F rm, possibly restricted to some subset of [0, 1]d), de-

fine the index set

J (N) :=

{
m ∈ N : 1 ≤ dimGm ≤

N

log4N

}
(2.5.3)

which is the set of all possible resolution levels of an estimator from Gm based on

a sample of size N . The upper bound on J (N) in imposed to make sure that the

resulting estimator is consistent. For the model selection procedures described below,

we will always assume that the index is chosen from the corresponding J (N).

Given a sample (X1, Y1), . . . , (XN , YN) from P , let
{
η̂m := η̂m,[0,1]d , m ∈ J (N)

}
be a

collection of estimators of η on the unit cube defined by formula (2.5.2). Our goal

is to choose the resolution level m in an optimal way using the given sample. Opti-

mality is understood as a balance between the bias term coming from the polynomial

approximation and the random error coming from the use of noisy data. Given t > 1,

define

m̂ := m̂(t, N) = min

{
m ∈ J (N) : ∀l > m, l ∈ J (N), ‖η̂l − η̂m‖∞ ≤ K1t

√
2dll

N

}
.

(2.5.4)

Remark 1: for brevity, everywhere in this section the sup–norm ‖ · ‖∞ stands for

‖f − g‖∞,supp(Π) := sup
x∈supp(Π)

|f(x)− g(x)|.
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Remark 2: Note that the actual value of m̂ can be numerically computed once the

estimators η̂l have simple structure. For example, when r = 0 and η̂l are piecewise-

constant functions, the running time of the algorithm that finds m̂ is O(N log2N).

This follows from the following considerations: first, we can write

η̂l(x) =
∑

i:Ri∩supp(Π)6=∅

∑N
j=1 YjIRi(Xj)

N · Π(Ri)
IRi(x),

where Rj have edge length 2−l, hence η̂l can be found in O(N) steps and takes at most

O(N) different values. The sup-norm ‖η̂l− η̂m‖∞ can be found in O(N) steps. There

are at most O(logN) models to consider, which totally gives at most O(N log2N)

running time.

We will compare m̂ to the ’optimal’ resolution level m̄ defined by

m̄ := min

{
m ∈ J (N) : ‖η − η̄m‖∞ ≤ K2

√
2dmm

N

}
. (2.5.5)

For m̄, we immediately get the following:

Lemma 2.5.5. If η ∈ Σ(B, [0, 1]d, β) for 0 < β ≤ r + 1, then

2m̄ ≤ C1 ·
(

NB2
1

log(NB2
1)

)1/(2β+d)

,

where B1 = C ·B for some C = C(Π, d, r).

Moreover, if condition 2 of Assumption 2.2 is satisfied with a constant B2, then

2m̄ ≥ C2 ·
(

NB2
2

log(NB2
2)

)1/(2β+d)

Remark: note that we specify the dependence on B1, B2 since we will allow these

constants to logarithmically depend on N later.

Proof. By the definition of m̄ and Corollary 2.5.3, we have

m̄ ≤ min

{
m ∈ J (N) : B12−βm ≤ K2

√
2dmm

N

}
.
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Clearly, the minimum can be bounded by m such that 2m ' C4

(
NB2

1

log(NB2
1)

)1/(2β+d)

, for

appropriate C4.

The second bound follows in a similar way, with Assumption 2.2 in place of Corollary

2.5.3 to estimate ‖η − η̄m‖∞:

m̄ ≥ min

{
m ∈ J (N) : B22−βm ≤ K2

√
2dmm

N

}
≥

≥ max

{
m ∈ J (N) : B22−βm > K2

√
2dmm

N

}
,

and it is easy to see thatB22−βm > K2

√
2dmm
N

is satisfied for 2m ' C5

(
B2

2N

log(B2
2N)

)1/(2β+d)

,

if C5 is sufficiently small.

The main result of this subsection is formulated below.

Theorem 2.5.6. Assume that η ∈ Σ(B, [0, 1]d, β) and that Assumption 2.2 is satisfied

with constant B2. Then there exists t0 = t0(Π, d, r) > 0 and K1 large enough such

that for all t ≥ t0 we have

m̂ ∈
(
m̄− 1

β

(
log2 t+ log2

B1

B2

+ h

)
, m̄

]
with probability at least 1 − C2dm̄ logN exp(−ctm̄), where h is some fixed positive

number that depends on d, r,Π and B1 = C ·B for some C = C(Π, d, r).

Remark: the bound above becomes useful if the endpoints of the interval are of

the same order, which retranslates as a condition for the size of m̄, or, using Lemma

2.5.5, can be further written in terms of N . Assume that we want m̂ ∈ (εm̄, m̄) to

hold with probability ≥ 1 − α. If, in addition, B1

B2
≤ C logN (as we will assume in

the sequel), then it is enough to require

t ≥ c1(2β + d)

(
1 +

log(1/α)

logN

)
,

N ≥ c2 (logN ∨ t)(2+ε)(2β+d)/β .
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If A is such that α = N−A, then the last condition can be stated as

N ≥ c3(β, d) · (logN ∨ A)(2+ε)(2β+d)/β . (2.5.6)

Proof. Let m > m̄ be fixed; by definition of m̂, we have

Pr (m̂ = m) ≤ Pr

(
∃l > m− 1 : ‖η̂l − η̂m−1‖∞ > K1t

√
2dll

N

)
≤

≤
∑

l∈J (N): l>m−1

Pr

(
‖η̂l − η̂m−1‖∞ > K1t

√
2dll

N

)
.

We will bound each term independently. Note that

‖η̂l − η̂m−1‖∞ ≤ ‖η̂l − η̄l‖∞ + ‖η̂m−1 − η̄m−1‖∞ + ‖η − η̄l‖∞ + ‖η − η̄m−1‖∞.

Since l > m− 1 ≥ m̄, we have by the definition of m̄

‖η − η̄l‖∞ ≤ K2

√
2dll

N
, ‖η − η̄m−1‖∞ ≤ K2

√
2d(m−1)(m− 1)

N
< K2

√
2dll

N
.

If 1
4
K1t > K2, this gives

Pr

(
‖η̂l − η̂m−1‖∞ > K1t

√
2dll

N

)
≤

≤ Pr

(
‖η̂l − η̄l‖∞ > K3t

√
2dll

N

)
+ Pr

(
‖η̂m−1 − η̄m−1‖∞ > K3t

√
2dll

N

)
,

where K3 = K2/4. It remains to apply Theorem 2.5.4( for A := [0, 1]d) to estimate the

probabilities above, and to take the sum over all l > m−1. Note that, by definition of

J (N),
√

2dll
N

is bounded above by a constant independent of l and that the dimension

factor dl,[0,1]d from Theorem 2.5.4 is bounded by 2dlDd,r ∼ C2dl. Finally, for t large

enough

Pr (m̂ = m) ≤
∑

l∈J (N): l>m−1

C2dl exp

(
−t2l
c1t

)
+

+ C2d(m−1)
∑

l∈J (N): l>m−1

exp
(
−c3t2

d(l−m+1)l
)
≤ C2d(m−1) exp (−ct(m− 1)) .
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Since m > m̄ was picked arbitrarily, it remains to use the union bound over all such

m to get that

Pr (m̂ > m̄) ≤ C2dm̄ exp (−ctm̄) . (2.5.7)

Now we turn our attention to the reverse inequality. Let m be such that

m < m̄− 1

β

(
log2 t+ log2

B1

B2

+ h

)
(2.5.8)

where h is some fixed positive integer that depends on d, r,Π. By the definition (2.5.4)

of m̂, we have

Pr (m̂ = m) ≤ Pr

(
‖η̂m − η̂m̄‖∞ ≤ K1t

√
2dm̄m̄

N

)
. (2.5.9)

Next, by triangle inequality

‖η̂m − η̂m̄‖∞ ≥ ‖η̄m − η‖∞ − ‖η̄m̄ − η‖∞ − ‖η̂m − η̄m − η̂m̄ + η̄m̄‖∞.

By Assumption 2.2, ‖η̄m − η‖∞ ≥ B22−βm. By the definition of m̄, ‖η̄m̄ − η‖∞ ≤

K2

√
2dm̄m̄
N

. Together with the inequality (2.5.9), this implies

Pr (m̂ = m) ≤ Pr

(
‖η̂m − η̄m − η̂m̄ + η̄m̄‖∞ ≥ B22−βm − (K1t+K2)

√
2dm̄m̄

N

)
.

(2.5.10)

Since we also have( by definition of m̄) that B12−β(m̄−1) ≥ K
√

2d(m̄−1)(m̄−1)

N
, our as-

sumption (2.5.8) on m implies, for h large enough,

B22−βm − (K1t+K2)

√
2dm̄m̄

N
≥ c1t

√
2dm̄m̄

N
.

It remains to apply Theorem 2.5.4 to further bound (2.5.10) from above. We get

Pr (m̂ = m) ≤ Pr

(
‖η̂m − η̄m‖∞ ≥

c1

2
t

√
2dm̄m̄

N

)
+ Pr

(
‖η̂m̄ − η̄m̄‖∞ ≥

c1

2
t

√
2dm̄m̄

N

)

≤ C2dm̄ exp (−ctm̄) .

The union bound over all m satisfying condition (2.5.8)( which givesO(logN) choices)

completes the proof.
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Remark. It easily follows from the definition of m̄ and the previous theorem that

the following inequality holds with probability ≥ 1− α (if B1

B2
. logN):

2−βm̂0 ≤ C

β

(
log

N

α

)1+ d
2β

√
2dm̂m̂

N
. (2.5.11)

This inequality will be useful in the sequel to control the bias, since 2dm̂m̂
N

is a purely

data-dependent quantity. If we assume that β ≥ ν for some ν > 0, then the upper

bound only depends on known parameters.

2.5.4 Functions satisfying Assumption 2.2

The goal of this subsection is to get more transparent description of the limitations

imposed by Assumption 2.2 on the class of underlying distributions. We will show

that all “nice” functions satisfy the requirements. The meaning of the following two

propositions can be summarized in the informal way as follows: functions that satisfy

Assumption 2.2 are the functions whose smoothness β can be learned from the data.

Proposition 2.5.7. Assume η ∈ Cr+1
(
[0, 1]d

)
, the space of (r+1)–times continuously

differentiable functions. Then Assumption 2.2 is satisfied.

Proof. First, note that, if (Dr+1η)
∣∣
supp(Π)

≡ 0, then the first condition of Assumption

2.2 holds. Otherwise, there exist x0 ∈ int supp(Π) such that Dr+1η(x0) 6= 0, meaning

that at least one of the partial derivatives of order r + 1 is nonzero. Define

M0 := max
|α|=r+1

∣∣∣∣Dαf

α!
(x0)

∣∣∣∣
where α is a multi index, and we employ the standard multi index notation below.

Let R ∈ H2m be a cube with edge length 2−m, such that x0 ∈ intR. Assume that z0

is the vertex of R closest to the origin, so that the change of variables y = 2m(x− z0)

transforms R into a unit cube. Our main step is based on the following fact: there

exists c(r+1, d) > 0 such that for all monic polynomials p of power r+1 in d variables

sup
x∈[0,1]d

|p(x)| ≥ c(r + 1, d). (2.5.12)
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Remark: we will say that a polynomial p =
∑
|α|≤k

cαx
α of degree k in d variables is

monic iff

max
|α|=k
|cα| = 1.

In what follows, M(k, d) denotes the set of all monic polynomials in d variables of

degree k.

One way to see (2.5.12) is as follows: first, since the norms on the space of polynomials

of bounded degree are equivalent, we have supx∈[0,1]d |p(x)| ≥ c1(r, d)‖p(x)‖L2(dx),

where ‖ · ‖L2(dx) is the usual L2–norm with respect to the Lebesgue measure. Next,

for p(x) =
∑
|α|≤r+1 cαx

α, we have

‖p‖2
L2(dx) =

∫
[0,1]d

 ∑
|α|≤r+1

cαx
α

2

dx =
∑

|α|,|β|≤r+1

cαcβAα,β = cTAc,

where Aα,β =
∫

[0,1]d
xαxβdx and c is a vector of coefficients of p (ordered lexicographi-

cally, for example). Since the set of monomials is linearly independent, A is positive

definite as a Gram matrix of a linearly independent set, hence

cTAc ≥ λmin(A)‖c‖2
2 := c2(r, d)‖c‖2

2.

It remains to notice that ‖c‖2 ≥ 1 for monic polynomials.

Going back to the main argument, let Tr+1(x;x0) be the Taylor polynomial of η at

x0, so that

η(x) = Tr+1(x;x0) + E(x− x0),

where E(x− x0) = o(‖x− x0‖r+1
∞ ). We have

‖Tr+1(x;x0)−η̄m(x)‖∞,R = ‖Tr+1(2−my + z0;x0)− η̄m(2−my + z0)‖∞,[0,1]d ≥

≥M02−m(r+1) inf
p∈M(r+1,d)

‖p‖∞,[0,1]d ≥ c(r + 1, d)M02−m(r+1)

If m0 = m0(η, x0) is such that |E(x − x0)| < 1
2
c(r + 1, d)M0‖x − x0‖r+1 for any
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‖x− x0‖∞ ≤ 2−m, then for any m ≥ m0

‖η − η̄m‖∞,R ≥ ‖η − Tr+1(·;x0)‖∞,R − ‖E(x)‖∞,R ≥

≥ 1

2
c(r + 1, d)M02−m(r+1),

concluding the proof.

When β 6= r + 1, we have the following result:

Proposition 2.5.8. Assume that {β} = β − bβc > 0 and define

fu(t) := η(x0 + tu), t ∈ R, u ∈ Rd, ‖u‖∞ = 1.

If there exist x0 ∈ (0, 1)d and u such that

lim
t→0

∣∣∣∣∣f (bβc)
u (t)− f (bβc)

u (0)

|t|{β}

∣∣∣∣∣ = M > 0,

then Assumption 2.2 is satisfied.

Proof. For −1 ≤ s ≤ 1, define gj(s) := f
(bβc)
u (2−js)−f (bβc)

u (0)

2−{β}j
. Note that

gj(s) −−−→
j→∞

M · g(s),

where g(s) can be one of four functions g1,2(s) := ±|s|{β} or g3,4(s) := ±|s|{β}sign(s),

and, moreover, convergence is uniform in s over any compact interval, due to our

assumptions. Indeed, the function h(t) := f
(bβc)
u (t) − f

(bβc)
u (0) must be nonzero in

some neighborhood t ∈ (−δ, δ) \ {0} (since M > 0), so it can only change the sign at

t = 0. The claim about uniformity is also straightforward:

sup
s
|gj(s)−M · g(s)| = sup

s

∣∣∣∣∣
∣∣∣∣∣f (bβc)
u (2−js)− f (bβc)

u (0)

(2−js){β}

∣∣∣∣∣−M
∣∣∣∣∣ · |s|{β} −−−→j→∞

0.

We will also define (motivated by the integral form of the remainder term in Taylor

expansion)

qj(t) =

t∫
0

gj(u)(t− u)bβc−1du.
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Clearly, qj(t) −−−→
j→∞

M · q(t) := M
t∫

0

g(u)(t − u)bβc−1du uniformly over compact sub-

sets. Our previous observations imply (for example, direct evaluation of q(t) gives

|q(t)| = |t|β
1∫
0

u{β}(1− u)bβc−1du = C|t|β) that for any closed interval I containing 0

D = D(r, η, I) := dist∞,I(q,Pr) > 0

– in other words, the distance in C(I) from q(t) to the subspace Pr of polynomials of

degree at most r is positive. Due to uniform convergence, there exists j0 such that

that for any j ≥ j0, dist∞(qj,Pr) ≥ M D
2

. As a consequence, for a dyadic cube R

containing x0 and I = I(x0) ⊂ R such that

x0 + 2−mtu ∈ R for t ∈ I

we have

‖η − η̄m‖∞,R ≥ ‖fu(2−mt)− η̄m(x0 + 2−mtu)‖∞,I =

=

∥∥∥∥∥∥Tbβc(2−mt; 0) +
2−βm

(bβc − 1)!

t∫
0

gm(u)(t− u)bβc−1du− η̄m(x0 + 2−mtu)

∥∥∥∥∥∥
∞,I

,

where Tbβc(2
−mt; 0)is the Taylor polynomial of fu(t) of degree bβc expanded around

0 and gm is defined above. Consequently, for m ≥ j0,

‖η − η̄m‖∞,R ≥
2−βm

(bβc − 1)!
inf
p∈Pr
‖qm(t)− p(t)‖∞,I ≥

2−βm

(bβc − 1)!
M
D

2
,

completing the proof.

To end this section, we will mention that results of the same flavor appeared in

a recent work of E. Giné and R. Nickl on adaptive density estimation [40], where a

condition similar to our Assumption 2.2 was studied in the case of wavelet projection

estimators. In particular, due to a nice characterization of smooth classes in terms of

wavelet coefficients, authors were able to show that the functions that do not satisfy

two-sided inequalities for approximation by wavelet projection form a nowhere dense

subset of the corresponding smoothness class.
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2.6 Main results

The question we address below is: what are the best possible rates that can be

achieved by active learning algorithms in our framework and how these rates can be

attained. We start this section by investigating the theoretical limitations of active

learning under our assumptions on the underlying distribution. The second subsection

is devoted to the detailed description and analysis of the learning algorithm introduced

earlier.

2.6.1 Minimax lower bounds for the excess risk

The goal of this section is to prove that for P ∈ P(β, γ), no active learner can output

a classifier with expected excess risk converging to zero faster than N−
β(1+γ)

2β+d−βγ . Our

result builds upon the minimax bounds appeared in the works of A. Tsybakov, J.-Y.

Audibert [4] and R. Nowak, R. Castro [23].

Remark The theorem below is proved for a smaller class P∗U(β, γ), which implies the

result for P(β, γ).

Theorem 2.6.1. Let β, γ, d be such that βγ ≤ d. Then there exists C > 0 such that

for all n large enough and for any active classifier f̂n(x) we have

sup
P∈P∗U (β,γ)

ERP (f̂n)−R∗ ≥ CN−
β(1+γ)

2β+d−βγ .

Proof. We proceed by constructing the appropriate family of classifiers fσ(x) =

sign ησ(x), in a way similar to Theorem 3.5 in [4], and then apply Theorem 1.2.9

mentioned in Chapter 1.

Let q = 2l, l ≥ 1 and

Gq :=

{(
2k1 − 1

2q
, . . . ,

2kd − 1

2q

)
, ki = 1 . . . q, i = 1 . . . d

}
be the grid on [0, 1]d. For x ∈ [0, 1]d, let

nq(x) = argmin {‖x− xk‖2 : xk ∈ Gq} .

35



If nq(x) is not unique, we choose a representative with the smallest ‖ · ‖2 norm. The

unit cube is partitioned with respect to Gq as follows: x1, x2 belong to the same subset

if nq(x1) = nq(x2). Let ′ �′ be some order on the elements of Gq such that x � y

implies ‖x‖2 ≥ ‖y‖2. Assume that the elements of the partition are enumerated with

respect to the order of their centers induced by ′ �′: [0, 1]d =
qd⋃
i=1

Ri. Fix 1 ≤ m ≤ qd

and let

S :=
m⋃
i=1

Ri

Note that the partition is ordered in such a way that there always exists 1 ≤ k ≤ q
√
d

with

B+

(
0,
k

q

)
⊆ S ⊆ B+

(
0,
k + 3

√
d

q

)
, (2.6.1)

where B+(0, R) :=
{
x ∈ Rd

+ : ‖x‖2 ≤ R
}

. In other words, (2.6.1) means that that

the difference between the radii of inscribed and circumscribed spherical sectors of S

is of order C(d)q−1.

Let v > r1 > r2 be three integers satisfying

2−v < 2−r1 < 2−r1
√
d < 2−r2

√
d < 2−1. (2.6.2)

Define u(x) : R 7→ R+ by

u(x) :=

∫∞
x
U(t)dt

1/2∫
2−v

U(t)dt

, (2.6.3)

where

U(t) :=

 exp
(
− 1

(1/2−x)(x−2−v)

)
, x ∈ (2−v, 1

2
)

0 else.

Note that u(x) is an infinitely differentiable function such that u(x) = 1, x ∈ [0, 2−v]

and u(x) = 0, x ≥ 1
2
. Finally, for x ∈ Rd let

Φ(x) := Cu(‖x‖2),

where C := CL,β is chosen such that Φ ∈ Σ(β, L,Rd).
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Figure 2: Geometry of the support

Let rS := inf {r > 0 : B+(0, r) ⊇ S} and

A0 :=

{⋃
i

Ri : Ri ∩B+

(
0, rS + q−

βγ
d

)
= ∅

}
.

Note that

rS ≤ c
m1/d

q
, (2.6.4)

since Vol (S) = mq−d.

DefineHm = {Pσ : σ ∈ {−1, 1}m} to be the hypercube of probability distributions

on [0, 1]d × {−1,+1}. The marginal distribution Π of X is independent of σ: define

its density p by

p(x) =


2d(r1−1)

2d(r1−r2)−1
, x ∈ B∞

(
z, 2−r2

q

)
\B∞

(
z, 2−r1

q

)
, z ∈ Gq ∩ S,

c0, x ∈ A0,

0 else.

where B∞(z, r) := {x : ‖x− z‖∞ ≤ r}, c0 := 1−mq−d
Vol(A0)

(note that Π(Ri) = q−d ∀i ≤

m) and r1, r2 are defined in (2.6.2). In particular, Π satisfies Assumption 2.1 since

it is supported on the union of dyadic cubes and has bounded above and below on

supp(Π) density. Let

Ψ(x) := u
(

1/2− q
βγ
d dist2(x,B+(0, rS))

)
,
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where u(·) is defined in (2.6.3) and dist2(x,A) := inf {‖x− y‖2, y ∈ A}.

Finally, the regression function ησ(x) = EPσ(Y |X = x) is defined via

ησ(x) :=

 σiq
−βΦ(q[x− nq(x)]), x ∈ Ri, 1 ≤ i ≤ m

1
CL,β

√
d

dist2(x,B+(0, rS))
d
γ ·Ψ(x), x ∈ [0, 1]d \ S.

The graph of ησ is a surface consisting of small “bumps” spread around S and tending

away from 0 monotonically with respect to dist2(·, B+(0, rS)) on [0, 1]d \ S. Clearly,

ησ(x) satisfies smoothness requirement, 1 since for x ∈ [0, 1]d

dist2(x,B+(0, rS)) = (‖x‖2 − rS) ∨ 0.

Let’s check that it also satisfies the low noise condition. Since |ησ| ≥ Cq−β on the

support of Π, it is enough to consider t = Czq−β for z > 1:

Π(|ησ(x)| ≤ Czq−β) ≤ mq−d + Π
(

dist2(x,B+(0, rS)) ≤ Czγ/dq−
βγ
d

)
≤

≤ mq−d + C2

(
rS + Czγ/dq−

βγ
d

)d
≤

≤ mq−d + C3mq
−d + C4z

γq−βγ ≤

≤ Ĉtγ,

if mq−d = O(q−βγ). Here, the first inequality follows from considering ησ on S and

A0 separately, and second inequality follows from (2.6.4) and direct computation of

the sphere volume.

Finally, ησ satisfies Assumption 2.2 with some B2 := B2(q) by Proposition 2.5.7

since ησ is infinitely differentiable. The next step in the proof is to choose the subset

of H which is “well-separated”: this can be done due to Gilbert-Varshamov bound,

see Proposition 1.2.10 in Chapter 1. Let H′ := {Pσ0 , . . . , PσM} be chosen such that

{σ0, . . . , σM} satisfies the Proposition 1.2.10. Next, following the proof of Theorems

1 and 3 in [23], we note that ∀σ ∈ H′, σ 6= σ0

KL(Pσ,N‖Pσ0,N) ≤ 8N max
x∈[0,1]

(ησ(x)− ησ0(x))2 ≤ 32C2
L,βNq

−2β, (2.6.5)

1Ψ(x) is introduced to provide extra smoothness at the boundary of B+(0, rS).
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where Pσ,N is the joint distribution of (Xi, Yi)
N
i=1 under hypothesis that the distribu-

tion of couple (X, Y ) is Pσ. Let us briefly sketch the derivation of (2.6.5); see also

the proof of Theorem 1 in [23]. Denote

X̄k := (X1, . . . , Xk),

Ȳk := (Y1, . . . , Yk).

Then dPσ,N admits the following factorization:

dPσ,N(X̄N , ȲN) =
N∏
i=1

Pσ(Yi|Xi)dP (Xi|X̄i−1, Ȳi−1),

where dP (Xi|X̄i−1, Ȳi−1) does not depend on σ but only on the active learning algo-

rithm. As a consequence,

KL(Pσ,N‖Pσ0,N) = EPσ,N log
dPσ,N(X̄N , ȲN)

dPσ0,N(X̄n, ȲN)
= EPσ,N log

∏N
i=1 Pσ(Yi|Xi)∏N
i=1 Pσ0(Yi|Xi)

=

=
N∑
i=1

EPσ,N
[
EPσ

(
log

Pσ(Yi|Xi)

Pσ0(Yi|Xi)

∣∣Xi

)]
≤

≤ N max
x∈[0,1]d

EPσ
(

log
Pσ(Y1|X1)

Pσ0(Y1|X1)

∣∣X1 = x

)
≤

≤ 8N max
x∈[0,1]d

(ησ(x)− ησ0(x))2,

where the last inequality follows from Lemma 1 in [23]. Also, note that we have

maxx∈[0,1]d in our bounds rather than the average over x that would appear in the

passive learning framework.

It remains to choose q,m in appropriate way: set q = bC1N
1

2β+d−βγ c and m =

bC2q
d−βγc where C1, C2 are such that qd ≥ m ≥ 1 and 32C2

L,βNq
−2β < m

64
which is

possible for N big enough. In particular, mq−d = O(q−βγ). Together with the bound

(2.6.5), this gives

1

M

∑
σ∈H′

KL(Pσ‖Pσ0) ≤ 32C2
L,βNq

−2β <
m

82
=

1

8
log |H′|,

so that conditions of Theorem 1.2.9 are satisfied. Setting

fσ(x) := sign ησ(x),
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we finally have ∀σ1 6= σ2 ∈ H′

d(fσ1 , fσ2) := Π(sign ησ1(x) 6= sign ησ2(x)) ≥ m

8qd
≥ C4N

− βγ
2β+d−βγ ,

where the lower bound just follows by construction of our hypotheses. Since under

the low noise assumption RP (f̂n)−R∗ ≥ cΠ(f̂n 6= sign η)
1+γ
γ (see (2.3.4)), we conclude

by Theorem 1.2.9 that

inf
f̂N

sup
P∈P∗U (β,γ)

Pr
(
RP (f̂n)−R∗ ≥ C4N

− β(1+γ)
2β+d−βγ

)
≥

≥ inf
f̂N

sup
P∈P∗U (β,γ)

Pr

(
Π(f̂n(x) 6= sign ηP (x)) ≥ C4

2
N−

βγ
2β+d−βγ

)
≥ τ > 0.

2.6.2 Upper bounds for the excess risk

In this subsection we continue the discussion of an active learning algorithm in-

troduced earlier. We will present detailed analysis and provide tight probabilistic

bounds for its performance. In particular, we show that the classifier constructed

by the algorithm attains the rates of Theorem 2.6.1, up to polylogarithmic factor,

if 0 < β ≤ r + 1. Moreover, the algorithm is adaptive with respect to β, γ and is

computationally tractable. The analysis builds upon our previous work [73] where

only the case of piecewise-constant estimators was treated. However, this limited

the adaptation range to 0 < β ≤ 1. It turns out that the general case involving

piecewise–polynomial estimators of higher degrees is more difficult in several aspects.

In particular, the algorithm itself requires some changes, and the associated analysis is

performed under slightly more restrictive assumptions. The main difference is related

to the geometry of the active set (see Section 2.4 for definitions). For piecewise–

constant estimators, the active set is always given by a union of dyadic cubes of fixed

size – same as the domain of an estimator. The level sets of polynomials of higher

degree have more complicated structure, so we need to approximate them by certain
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’regular’ sets which allows the algorithm to maintain suitable structure for the sub-

sequent iterations.

This section is organized as follows: first, the basic case of piecewise-constant estima-

tors is presented(r = 0). The rigorous description of the learning procedure for this

case is summarized in Algorithm 1. The main facts about the performance of the

method are formulated in Theorem 2.6.2. Then we proceed with a general case r ≥ 1

and, building upon the foundations of Theorem 2.6.2, prove our main result, Theo-

rem 2.6.3. In the end, we provide the running time analysis and computer simulation

results.

2.6.3 Learning with piecewise-constant functions

It would be convenient for us to define the stopping rule for Algorithm 1 in terms of the

label threshold N̄ . The algorithm stops after completing the first iteration on which

the total number of used labels exceeds N̄ (so that N̄ gives only approximate bound

for the total number of requested labels). Another (and, sometimes, more convenient)

way to define the stopping rule is to do it in term of the prescribed confidence level

and excess risk that the resulting classifier should attain. This requires an additional

validation subroutine that is able to keep track of the excess risk by estimating it

from the data, but we are currently not aware of the method allowing to implement

such procedure into our algorithm. This is a minor disadvantage of our approach

relative to the popular empirical risk minimization techniques where the excess risk

can often be adaptively estimated from the data.

In what follows, N̄ will stand for the label threshold and N – for the total number of

used labels. Recall that, given a set A and g ∈ F0
m (the space of piecewise-constant

functions on the dyadic partition H2m of [0, 1]d),

F∞,A(g; δ) :=
{
f ∈ F0

m : ‖f − g‖∞,A ≤ δ
}
.

We briefly go over the main stages of Algorithm 1: first, a small part of the label
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Algorithm 1: Active Learning Algorithm, r = 0.

input : label threshold N̄ ; confidence α; minimal regularity 0 < ν < 1
output: ĝ := sign η̂

1 ω := 2 + d
2ν

;

2 k = 0, Â0 := [0, 1]d ;

3 N0 := b
√
N̄c ;

4 LB := N̄ − 2N0;
5 for i = 1 to 2N0 do

6 sample i.i.d.
(
X

(0)
i , Y

(0)
i

)
with X

(0)
i ∼ Π;

7 S0,1 :=
{(
X

(0)
i , Y

(0)
i

)
, i ≤ N0

}
, S0,2 =

{(
X

(0)
i , Y

(0)
i

)
, N0 + 1 ≤ i ≤ 2N0

}
;

8 m̂0 := m̂(s,N0;S0,1) /* see equation (2.5.4) in Section 2.5.3 */;
9 η̂0 := η̂m̂0,[0,1]d;S0,2

/* see equation (2.5.2) in Section 2.5.2 */;

10 while LB > 0 do

11 F̂k :=
{
f ∈ F0

m̂k
: f |Âk ∈ F∞,Âk(η̂k; δk), f |[0,1]d\Âk ≡ η̂k−1|[0,1]d\Âk

}
/* confidence band around η̂k */;

12 k := k + 1;

13 Âk :=
{
x ∈ [0, 1]d : ∃f1, f2 ∈ F̂k−1, sign (f1(x)) 6= sign (f2(x))

}
;

14 if Âk ∩ supp(Π) = ∅ then
15 break

16 else
17 m̂k := m̂k−1 + 1 ;

18 τk := m̂k
m̂k−1

;

19 Nk := bN τk
k−1c;

20 for i = 1 to bNk · Π(Âk)c do

21 sample i.i.d.
(
X

(k)
i , Y

(k)
i

)
with X

(k)
i ∼ Π̂k := Π(dx|x ∈ Âk);

22 Sk :=
{(
X

(k)
i , Y

(k)
i

)
, i ≤ bNk · Π(Âk)c

}
;

23 η̂k := η̂m̂k,Âk /* estimator based on Sk */;

24 δk := D̃(log N̄
α

)
ω
m̂k
m̂0 ·

√
2dm̂k
Nk

/* size of the confidence band */;

25 LB := LB − bNk · Π(Âk)c;
26 η̂ := η̂k /* keeping track of the most recent estimator */;
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budget of cardinality 2N0 is used to select the optimal resolution level and to construct

a preliminary estimator η̂0: the first N0 pairs (Xi, Yi) denoted by S0,1 are used to select

m̂0, and the rest (denoted S0,2) are used to construct η̂0. The iterative part of the

algorithm works as follows: based on the current estimator η̂k, the confidence band

F̂k is constructed. In turn, F̂k is used to obtain the active set Âk that serves as a

support for the updated design distribution Π̂k. The cardinality of a new sample from

Π̂k guarantees that the local amount of data increases on every step, allowing tighter

concentration in sup-norm. Nk is chosen based on the requirement that on every

step, 2m̂k ≈ N
1/(2β+d)
k ( this motivates our definition of τk). After the label threshold

is exceeded, algorithm outputs the sign of the most recent estimator as a result.

For convenience, we summarize our main assumptions before stating the theorems.

(i) P ∈ P∗U(β, γ), meaning that the low noise assumption (see (2.2.1)) is satisfied

with exponent γ and for all m ≥ 1

B22−βm ≤ ‖η − η̄m‖∞,supp(Π) ≤ B12−βm. (2.6.6)

(ii) B1 ≤
√

log N̄ , B2 ≥ 1√
log N̄

, where N̄ is the label threshold. This assumption

allows one to construct explicit non-asymptotic confidence bands, and it can be

replaced by any other known bounds on B1, B2 (note that instead of
√
· we could

use any other power function which would affect only the logarithmic factor in

the resulting bounds).

(iii) If A is such that α = N̄−A and 0 < ν ≤ 1, then

N̄ ≥ C(ν, d) ·
(
log N̄ ∨ A

)5(2ν+d)/ν
.

This condition comes from Theorem 2.5.6, and the number ν essentially deter-

mines the range of uniformity of our results.
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(iv) This last assumption is only used in Theorem 2.6.3: there exist K1, K2γ > 0

such that

∀ t > 0, K2t
γ ≤ Π(x : |η(x)| ≤ t) ≤ K1t

γ,

where K1

K2
≤ log N̄ (log N̄ can be replaced by any polynomial in log N̄ with

corresponding changes in the resulting log-factor). This condition is a more

restrictive version of the low noise assumption and is similar to condition used

in a work of R. Nowak and R. Castro [23]. Note that in the simplest case of

piecewise constant estimators r = 0 the lower bound is not necessary.

Below, we will mainly concentrate on the hardest case when the graph of the regres-

sion function hits or crosses the decision boundary {x : η(x) = 0} in the interior or

boundary of supp(Π). In terms of the parameters of the distribution, this case can

be characterized by a condition (β ∧ 1)γ ≤ d (see Proposition 3.4 in [5] for details).

The easier case when |η(x)| is bounded away from 0 on supp(Π) (often called “the

bounded noise condition”) can be handled similarly, and under our assumptions the

Bayes classifier f∗ = sign η can be learned with high probability in finitely many

steps.

Theorem 2.6.2. If the aforementioned assumptions (i-iii) are satisfied, then the

following holds uniformly over all 0 < ν ≤ β ≤ 1 and γ > 0: with probability at least

1−α, the classifier ĝ returned by Algorithm 1 with label threshold N̄ and confidence

α, satisfies

RP (ĝ)−R∗ ≤ C ·N−
β(1+γ)

2β+d−βγ logp
N̄

α
,

where p ≤
(

4+2d
ν

)2
(1 + γ)

(
1 + βγ

2β+d−βγ

)
and N is the label complexity - the total

number of requested labels.

Remarks:

1. Note that when βγ > d
3
, N−

β(1+γ)
2β+d−βγ is a fast rate, that is, faster than N−

1
2 ; at
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the same time, the passive learning rate N−
β(1+γ)
2β+d is guaranteed to be fast only

when βγ > d
2
, see [4] (we assume here that 0 < β ≤ 1).

2. For α̂ ' N−
β(1+γ)

2β+d−βγ Algorithm 1 returns a classifier ĝα̂ that satisfies the fol-

lowing average excess risk bound:

ERP (ĝα̂)−R∗ ≤ Const ·N−
β(1+γ)

2β+d−βγ logpN.

This is a direct corollary of Theorem 2.6.2 and the inequality

E|Z| ≤ t+ ‖Z‖∞ Pr(|Z| ≥ t).

Proof. Our main goal will be to construct high probability bounds for the size of

the sets Âk defined by Algorithm 1. In turn, these bounds depend on the size of

the confidence bands for η(x) (denoted by δk). Suppose L is the number of steps

performed by the algorithm before termination.

Let Nact
k := bNk · Π(Âk)c be the number of labels requested on k-th iteration of

the algorithm. Claim: the following bounds hold uniformly for all 1 ≤ k ≤ L with

probability at least 1− α:

‖η − η̂k‖∞,Âk ≤ C

(
log

N̄

α

)ω m̂k
m̂0

·N−β/(2β+d)
k

Π(Âk) ≤ C

(
log

N̄

α

)γωτ̄
·N−βγ/(2β+d)

k−1 (2.6.7)

where ω = 2 + d
2ν

and τ̄ = 4 + 2d
ν

.

Let us first assume that (2.6.7) has already been established and derive the result

from it. Let m̄0 be the “optimal” resolution level for the corresponding sample of size

N0, see formula (2.5.5) and line 3 of Algorithm 1. First, we make a useful observation

that, with high probability, numbers Nk grow geometrically: indeed, we have by the

definition of m̂k

Nk+1 = bN m̂k+1/m̂k
k c ≤ Nk ·N1/m̂k

k ≤ Nk ·
(
N

m̂k
m0

0

) 1
m̂k

= Nk ·N
1
m̂0

0 ,
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and by Theorem 2.5.6 (see the remark following the main statement), if N0 is suffi-

ciently large, as guaranteed by our assumptions,

log2N0

m̄0

≤ log2N
1/m̂0

0 ≤ log2N0

1
2
m̄0

with probability ≥ 1− α. Finally, Lemma 2.5.5 gives

1

2β + d
logN0 + c ≥ m̄0 ≥

1

2β + d
(logN0 − 2 log logN0)− c

which shows that 0 < C1 ≤ log2N
1/m̂0

0 ≤ C2.

Next, inequality (2.6.7) implies, together with the previous observation, that the

number of labels requested on step k ≥ 1 satisfies

Nact
k = bNkΠ(Âk)c ≤ C ·N

2β+d−βγ
2β+d

k−1

(
log

N̄

α

)γωτ̄
with probability ≥ 1 − 2α. If N is the total number of labels requested by the

Algorithm, then

N =
L∑
k=0

Nact
k ≤ C3

(
log

N̄

α

)γωτ̄ L∑
k=0

N
2β+d−βγ

2β+d

k ≤ C4

(
log

N̄

α

)γωτ̄
N

2β+d−βγ
2β+d

L ,

one easily deduces that on the last iteration L we have

NL ≥ c(ν, γ,Π, d)

(
N

logγωτ̄ (N̄/α)

) 2β+d
2β+d−βγ

(2.6.8)

To obtain the risk bound of the theorem from (2.6.8), we apply inequality (2.3.2)

from Proposition 2.3.1:

RP (ĝ)−R∗ ≤ D1‖(η̂L − η) · I {sign η̂L 6= sign η} ‖1+γ
∞ . (2.6.9)

Since {sign η̂L 6= sign η}∩supp(Π) ⊆ ÂL whenever the bounds (2.6.7) hold, it remains

to estimate ‖η̂L − η‖∞,ÂL . Recalling the first inequality of (2.6.7) once again (for

k = L), we get

‖(η̂L − η) · I {sign η̂L 6= sign η} ‖∞ ≤ C

(
log

N̄

α

)ωτ̄ (
N

logγωτ̄ (N̄/α)

)− β
(2β+d−βγ)
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which together with (2.6.9) yields the final result, after some simple algebra to esti-

mate the power of the logarithm.

It remains to show (2.6.7). The main tools are given by Theorem 2.5.4 and Theorem

2.5.6. Let η̂k be the estimator obtained on step k. For k = 0, we have

‖η − η̂0‖∞,supp(Π) ≤ ‖η − η̄m̂0‖∞,supp(Π) + ‖η̄m̂0 − η̂0‖∞,supp(Π).

By Theorem 2.5.4 (applied conditionally on S0,1, see a remark after the theorem for

details), with probability ≥ 1− α

‖η̄m̂0 − η̂0‖∞,supp(Π) ≤ C log(N̄/α)

√
2dm̂0

N0

.

For the bias term ‖η− η̄m̂0‖∞,supp(Π), there are two possibilities: if the first condition

of Assumption 2.2 is satisfied, then the bias is 0 for m ≥ m0, and we are only left to

control the random error as above. Otherwise, by our assumptions on η (see Corollary

2.5.2),

‖η − η̄m̂0‖∞,supp(Π) ≤ B12−βm̂0 .

By a remark (2.5.11) after Theorem 2.5.6, with probability ≥ 1− α

2−βm̂0 ≤ C

β

(
log

N̄

α

)1+ d
2β

√
2dm̂0m̂0

N0

, (2.6.10)

and by Theorem 2.5.6 and Lemma 2.5.5, with probability ≥ 1− α

2dm̂0

N0

≤ 2dm̄0

N0

≤ C1N
−2β/(2β+d)
0 , (2.6.11)

so that, with probability ≥ 1− 2α,

‖η − η̂0‖∞,supp(Π) ≤ C(β,Π)

(
log

N̄

α

)3/2+ d
2β

√
2dm̂0m̂0

N0

:=
δ0

2
≤ (2.6.12)

≤ C(β,Π)

(
log

N̄

α

)2+ d
2β

N
− β

2β+d

0 .

For k ≥ 1, we have in a similar way

‖η − η̂k‖∞,Âk ≤ ‖η − η̄m̂k‖∞,Âk + ‖η̄m̂k − η̂k‖∞,Âk .
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By (2.6.11) and Theorem 2.5.4 applied for A := Âk and N := Nact
k (conditionally on

k−1⋃
i=0

Sk), with probability ≥ 1− α

‖η̄m̂k − η̂k‖∞,Âk ≤ C log(N̄/α)

√
2dm̂k

Nk

≤ C log(N̄/α)

√2dm̂0

N0


∏k
i=1 τk

≤

≤ C log(N̄/α)N
−β/(2β+d)
k . (2.6.13)

Once again, for the bias term, we only need to consider the case when the second

condition of Assumption 2.2 is satisfied. By (2.6.10), we have

‖η − η̄m̂k‖∞,Âk ≤ CB12−βm̂k = CB1

(
2−βm̂0

)∏k
i=1 τi ≤

≤ C(β,Π)B1

(log
N̄

α

)1+ d
2β

√
2dm̂0m̂0

N0


∏k
i=1 τi

≤ (2.6.14)

≤ C(ν,Π)

[(
log

N̄

α

)2+ d
2ν

]∏k
i=1 τi

√
2dm̂k

Nk

:=
δk
2
≤

≤ C(ν,Π)

[(
log

N̄

α

)2+ d
2ν

]∏k
i=1 τi

N
−β/(2β+d)
k ,

which holds with probability ≥ 1− α and gives together with (2.6.13) that

‖η − η̂k‖∞,Âk ≤
δk
2
≤ C(ν,Π)

[(
log

N̄

α

)2+ d
2ν

]∏k
i=1 τi

N
−β/(2β+d)
k (2.6.15)

with probability ≥ 1 − 2α. Finally, it remains to note that for all 1 ≤ k ≤ L, with

probability ≥ 1− 2α,

k∏
i=1

τi ≤
L∏
i=1

τi ≤ 2
2ν + d

ν
:= τ̄ . (2.6.16)

Indeed, on each iteration, the set Âk contains at least one dyadic cube with edge

length 2−m̂k−1 , and by our assumption on Π, Theorem 2.5.6 and Lemma 2.5.5,

Π(Âk) ≥ u12−dm̂k−1 ≥ u1

(
2−dm̂0

)m̂k−1/m̂0 ≥ u1

(
2−dm̄0

)m̂k−1/m̂0 ≥

≥ C
(
N
−d/(2β+d)
0

)m̂k−1/m̂0

≥ CN
−d/(2β+d)
k .
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Also, because of the geometric growth of Nk, the number of labels requested on a last

step cannot exceed CN̄ , in other words,

CN̄ ≥ bNLΠ(AL)c ≥ C1N
2β/(2β+d)
L ≥ C2

(
N

2β/(2β+d)
0

)∏L
i=1 τi ≥ C2

(
N

2ν/(2ν+d)
0

)∏L
i=1 τi

,

and, since N0 = b
√
N̄c, this implies (2.6.16).

The union bound over all 0 ≤ k ≤ L gives that, with probability ≥ 1− 4(L+ 1)α, on

every iteration we have

‖η − η̂k‖∞,Âk ≤
δk
2
≤ C̄(ν,Π)

(
log

N̄

α

)τ̄(2+ d
2ν

)

N
−β/(2β+d)
k , (2.6.17)

where we used that
k∏
i=1

τi ≤ τ̄ for any k (on this event). With D̃ from the definition

of δk in line 24, Algorithm 1, satisfying D̃ = 2C̄(ν,Π) (where C̄(ν,Π) is the constant

from (2.6.17)), it can be easily seen that the necessary condition for x ∈ supp(Π)∩ Âk

is

|η(x)| ≤ 3C̄ ·
(

log
N̄

α

)τ̄(2+ d
2ν

)

N
−β/(2β+d)
k−1 .

Indeed, by triangle inequality,

x ∈ supp(Π) ∩ Âk =⇒ |η̂k(x)| ≤ δk =⇒

|η(x)| ≤ |η̂k(x)|+ |η(x)− η̂k(x)| ≤ 3

2
δk.

This gives, by the low noise assumption,

Π(Âk) = Π(Âk ∩ supp(Π)) ≤ Π

(
|η(x)| ≤ 3C̄ ·

(
log

N̄

α

)τ̄(2+ d
2ν

)

N
−β/(2β+d)
k−1

)
≤

≤ K log(N̄/α)γτ̄(2+ d
2ν

) ·N−βγ/(2β+d)
k−1

for every 1 ≤ k ≤ L, with probability ≥ 1− 4Lα, hence proving the claim (since the

number of steps L is surely bounded by the label threshold N̄ , the confidence can be

raised to 1− α if we use α
N̄

in place of α, which only affects the constants).
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2.6.4 Learning with piecewise-polynomial functions

Finally, we present and analyze the learning algorithm in the case when more complex

estimators (r ≥ 1) are used. The main difference with the case r = 0 is that for ’highly

regular’ functions (i.e., with β > 1), the size of the confidence bands decays faster

resulting in a smaller active set. While this is a positive observation on the one

hand, we encounter some technical difficulties arising from the fact that the natural

’resolution level’ for the active set might be much smaller than the ’resolution level’

of the corresponding estimator. One might think of a set having a small measure

but many connected components, and the problem of constructing an estimator for

the regression function supported on such a set and attaining small sup-norm error

is difficult.

Recall that Bm is the sigma-algebra generated by the dyadic cubes Rj, 1 ≤ j ≤ 2dm

forming the partition of [0, 1]d. We briefly mention the main differences between

Algorithm 2 and Algorithm 1. As we have already observed, the “true” active set

(denoted Actk below) associated to the confidence band can be quit hard to work with,

so instead the algorithm constructs its approximation by a union of dyadic cubes of

suitable size, denoted Âk, which is at most C log N̄ times larger (with respect to Π).

This allows to maintain the structure suitable for the iterative nature of our method.

Theorem 2.6.3. If the aforementioned assumptions (i-iv) are satisfied and (β∧1)γ ≤

d, then the following holds uniformly over all 0 < ν ≤ β ≤ r + 1 and γ > 0: with

probability at least 1−α, the classifier ĝ returned by Algorithm 2 with label threshold

N̄ and confidence α, satisfies

RP (ĝ)−R∗ ≤ C ·N−
β(1+γ)

2β+d−(β∧1)γ logp
N̄

α
,

where p ≤
(

4+2d
ν
∨ (r + 1)(2(r + 1) + d)

)2
(1 + γ)

(
1 + βγ

2β+d−βγ

)
and N is the total

number of label requests.
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Algorithm 2: Active Learning Algorithm, r ≥ 1.

input : label threshold N̄ ; confidence α; minimal regularity 0 < ν < 1
output: ĝ := sign η̂

1 ω := 2 + d
2ν

;

2 k = 0, τ0 = 1, Â0 := [0, 1]d ;

3 N0 := bN̄1/(2(r+1))c ;
4 LB := N̄ − 2N0;
5 for i = 1 to 2N0 do

6 sample i.i.d.
(
X

(0)
i , Y

(0)
i

)
with X

(0)
i ∼ Π;

7 S0,1 :=
{(
X

(0)
i , Y

(0)
i

)
, i ≤ N0

}
, S0,2 =

{(
X

(0)
i , Y

(0)
i

)
, N0 + 1 ≤ i ≤ 2N0

}
;

8 m̂0 := m̂(s,N0;S0,1) /* see equation (2.5.4) in Section 2.5.3 */;
9 η̂0 := η̂m̂0,[0,1]d;S0,2

/* see equation (2.5.2) in Section 2.5.2 */;

10 while LB > 0 do

11 δk := D̃
(

log N̄
α

)ω k∏
i=0

τi
√

2dm̂k
Nk

/* size of the confidence band */;

12 F̂k :=
{
f ∈ F rm̂k : f |Âk ∈ F∞,Âk(η̂k; δk), f |[0,1]d\Âk ≡ η̂k−1|[0,1]d\Âk

}
;

13 k := k + 1;

14 Actk :=
{
x ∈ [0, 1]d : ∃f1, f2 ∈ F̂k−1, sign (f1(x)) 6= sign (f2(x))

}
/* the

‘‘true" active set */;
15 if Actk ∩ supp(Π) = ∅ then
16 break

17 else
18 m̂k :=

min

{
m ≥ [τk−1m̂k−1 ∨ (m̂k−1 + 1)] : min

A∈Bm, A⊃Actk
Π (A) ≤ C log N̄ Π(Actk)

}
;

Âk :=
⋂
{A : A ∈ Bm̂k , A ⊃ Actk} /* regular approximation of

Actk */;

19 τk := m̂k
m̂k−1

;

20 Nk := bN τk
k−1c;

21 for i = 1 to bNk · Π(Âk)c do

22 sample i.i.d.
(
X

(k)
i , Y

(k)
i

)
with X

(k)
i ∼ Π̂k := Π(dx|x ∈ Âk);

23 Sk :=
{(
X

(k)
i , Y

(k)
i

)
, i ≤ bNk · Π(Âk)c

}
;

24 η̂k := η̂m̂k,Âk /* estimator based on Sk */;

25 LB := LB − bNk · Π(Âk)c;
26 η̂ := η̂k /* keeping track of the most recent estimator */;
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Remark. Note that the main difference with the bound of Theorem 2.6.2 is that

we have (β ∧ 1)γ instead of βγ (which coincide iff β ≤ 1) in the exponent. We will

further discuss the sources of this difference below.

Proof. The argument follows exactly the same pattern as Theorem 2.6.2, so we will

only outline the necessary changes. Note that the resolution levels m̂k do not have to

grow arithmetically anymore, implying, in particular, that the sequenceNk controlling

the ’number of labeled observations per unit volume’ might grow exponentially. Our

first step is to show that

(a) in the case r + 1 ≥ β > 1, with high probability we have m̂k+1

m̂k
≤ β for every

k ≥ 0, implying that Nk+1 ≤ Nβ
k ;

(b) at the same time, for β ≤ 1 we have that for every k ≥ 1,

τk = τ1 :=
m̂1

m̂0

= 1 +
1

m̂0

with high probability, so that Nk grow geometrically and the proof goes through

as in Theorem 2.6.2 without further changes.

To obtain the desired inequalities, we will compare two estimators of η: the first is the

piecewise–polynomial estimator η̂k constructed by the algorithm on step k and the

second is the piecewise–constant estimator η̄k that has similar to η̂k approximation

properties (for example, this can be a projection of η onto the space of piecewise–

constant functions with a suitable resolution level). As a result, we will be able to

relate the “active sets” associated to these estimators, taking advantage of the fact

that the active set associated to η̄k is always a union of dyadic cubes, and conclude

that m̂k+1 cannot exceed the resolution level of η̄k.

We proceed by inductive argument. As we have already seen before, for k = 0 we

have ‖η̂0 − η‖∞,supp(Π) ≤ δ0/2, where δ0 is defined in line 11 of Algorithm 2. Note
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that the following inclusions hold:

{x : |η(x)| < δ0/2} ⊆ Act1 ⊆ {x : |η(x)| < 3δ0/2} .

Indeed,

|η(x)| < δ0/2 =⇒ |η̂0(x)| < δ0/2 + |η(x)− η̂0(x)| < δ0 =⇒ x ∈ Act1

and

x ∈ Act1 =⇒ |η̂0(x)| < δ0 =⇒ |η(x)| < 3δ0/2.

Let η̄0 be a projection of η onto F0
l0

(the space of piecewise-constant functions on the

dyadic partition of the unit cube) where l0 is such that |η − η̄0| ≤ δ0/2, let F̄0 be the

band of size 2δ0 around η̄0 and Ā1 =
{
x : ∃f1, f2 ∈ F̄0 : sign (f1(x)) 6= sign (f2(x))

}
.

By a similar argument we have

{x : |η(x)| < 3δ0/2} ⊆ Ā1 ⊆ {x : |η(x)| < 5δ0/2} ,

which implies

{x : |η(x)| < δ0/2} ⊆ Act1 ⊆ Ā1 ⊆ {x : |η(x)| < 5δ0/2} .

Note that

1. Ā1 is the union of dyadic cubes with edge length 2−l0 ;

2. Π(Ā1)
Π(Act1)

≤ Π({x:|η(x)|≤5δ0/2})
Π({x:|η(x)|≤δ0/2}) ≤ 5γ log N̄ by assumption (iv),

meaning that Ā1 gives the required “regular approximation” of Act1, hence m̂1 ≤ l0.

When β > 1 (case (a)), we have that

‖η − η̄0‖∞ ≤ B12−(β∧1)l0 ≤
√

log N̄ · 2−l0 . (2.6.18)

Recalling the definition of δ0 := C
(

log N̄
α

)2+ d
2ν
√

2dm̂0

N0
, we see that it clearly suffices

to take

2l0 '

√
N0

2dm̂0(
log N̄

α

)3/2+ d
2ν
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to have ‖η − η̄0‖∞ ≤ δ0/2. At the same time, by (2.6.10) we have

2βm̂0 &

√
N0

2dm̂0(
log N̄

α

)1+ d
2ν

with probability ≥ 1 − α, giving that on the same event 2βm̂0 ≥ 2l0 , hence l0
βm̂0
≤ 1,

implying m̂1 ≤ l0 ≤ βm̂0, as desired.

Proceeding in a similar way, we get that the following holds with probability≥ 1−2Lα

uniformly for every 1 ≤ k ≤ L (for the definition of δk, see Algorithm 2):

1) ‖η̂k − η‖∞,Âk ≤ δk/2,

2) {x : |η(x)| < δk/2} ⊆ Actk+1 ⊆ Āk+1 ⊆ {x : |η(x)| < 5δk/2} ,

3) 2lk '

√
Nk

2dm̂k(
log N̄

α

)(3/2+ d
2ν

)
m̂k
m̂0

, (2.6.19)

4) 2βm̂k & C

√
Nk

2dm̂k(
log N̄

α

)(1+ d
2ν

)
m̂k
m̂0

,

hence on this event lk
m̂k
≤ β and m̂k+1 ≤ βm̂k. Similar reasoning gives the second

part of the claim (the case β ≤ 1, with the only change occurring due to β ∧ 1 = β,

see (2.6.18)).

It remains to bound m̂L
m̂0

to control the power of the logarithmic term. One way to do

this is as follows: let L be the number of the last iteration before termination. Since

the number of labels requested on (L − 1)st iteration does not exceed N̄ , we have

2N̄ ≥ NL−1Π(AL−1). On the event where inequalities (2.6.19) hold AL−1 contains at

least one dyadic cube with edge length 2−m̂L−1 , hence by our assumptions on Π and

Theorem 2.5.6

Π(AL−1) ≥ u12−dm̂L−1 = u1

(
2−dm̂0

)m̂L−1/m̂0 ≥ u1

(
2−dm̄0

)m̂L−1/m̂0 ≥

≥ u1

(
CN

−d/(2β+d)
0

)m̂L−1/m̂0

≥ CN
−d/(2β+d)
L−1 .
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This gives

2N̄ ≥ NL−1Π(AL−1) ≥ cN
2β/(2β+d)
L−1 ≥ c

(
N

2β/(2β+d)
0

)m̂L−1/m̂0

,

and since N0 := bN̄1/2(r+1)c by definition, we have that with probability ≥ 1− 2Lα,

m̂L−1

m̂0
≤ (r+1)(2β+d)

β
and

1. m̂L
m̂0

= m̂L
m̂L−1

m̂L−1

m̂0
≤ β (r+1)(2β+d)

β
≤ (r + 1)(2(r + 1) + d) in the case β > 1 and

2. m̂L
m̂0
≤ 4 + 2d

ν
if β ≤ 1, see (2.6.16).

Set τ̄ := (r + 1)(2(r + 1) + d) ∨
(
4 + 2d

ν

)
. As before, the final result is implied once

we have the lower bound on NL, L being the index of the last iteration.

In the case β > 1, the required bound is obtained as follows. First, note that for

k ≥ 2

qk := NkN
− βγ

2β+d

k−1 ≥ N τk
k−1

(
N
τk−1

k−2

)− βγ
2β+d ≥

(
Nk−1N

− βγ
2β+d

k−2

)τk−1

= q
τk−1

k−1 ,

since τk is nondecreasing. Moreover, the sequence {qk} grows exponentially fast. In

particular,
j∑
i=1

qi ≤ Cqj for any j ≥ 2.

This implies, together with the inequality Π(Âk) ≤ Π(|η(x)| ≤ 3
2
δk−1) ≤ Kδγk−1,

N =
L∑
k=0

bNkΠ(Âk)c ≤ C

(
log

N̄

α

)τ̄γ(2+d/2ν) L∑
k=0

qk ≤

≤ C

(
log

N̄

α

)τ̄γ(2+d/2ν)

qL, (2.6.20)

Since on event (2.6.19) τL ≤ β, we have

qL ≤ N τL
L−1N

− βγ
2β+d

L−1 ≤ N
τL(1− γ

2β+d)
L−1 . (2.6.21)

Combining inequalities (2.6.20),(2.6.21), it is easy to see that with high probability

(at least 1− 2Lα)

NL = bN τL
L−1c ≥ C

 N(
log N̄

α

)τ̄γ(2+d/2ν)


2β+d

2β+d−γ

,
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and the final result now follows from inequality (2.3.2) of Proposition 2.3.1.

In the case β ≤ 1, the proof is similar to Theorem 2.6.2. The final form of the bound

is a concatenation of the estimates for β > 1 and β ≤ 1.

2.7 Running time analysis

We continue this section by discussing the running time of Algorithm 1. Algorithm 2

is of mostly theoretical interest since it involves exact computation of the level sets of

multivariate polynomials of high degree. Assume that the algorithm has access to the

sampling subroutine that, given A ⊂ [0, 1]d with Π(A) > 0, generates i.i.d. (Xi, Yi)

with Xi ∼ Π(dx|x ∈ A).

Proposition 2.7.1. The running time of Algorithm 1 with label budget N̄ is

O(N̄ log2 N̄).

Remark In view of Theorem 2.6.2, the running time required to output a classifier

ĝ such that RP (ĝ)−R∗ ≤ ε with probability ≥ 1− α is

O

((
1

ε

) 2β+d−βγ
β(1+γ)

poly

(
log

1

εα

))
,

given that the label threshold is large enough.

Proof. We will use the notations of Theorem 2.6.2. Let Nact
k be the number of labels

requested by the algorithm on step k. The resolution level m̂k is always chosen such

that Âk is partitioned into at most Nact
k dyadic cubes. This means that the estimator

η̂k takes at most Nact
k distinct values and can be found in O(Nact

k ) steps. The key

observation is that for any k, the active set Âk is always represented as the union of

a finite number(at most Nact
k−1) of dyadic cubes: to determine if a cube Rj ⊂ Âk+1, it

is enough to take a point x ∈ Rj and compare sign(η̂k(x)− δk) with sign(η̂k(x) + δk):

Rj ∈ Âk+1 only if the signs are different(so that the confidence band crosses zero

level). This can be done in O(Nact
k ) steps, so the whole k-th iteration running time is
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O(Nact
k ). Next, resolution level m̂0 can be found in O(N0 log2 N̄) steps, see Remark

2 after (2.5.4). Since
∑
k

Nact
k = O(N̄) and N0 = O(N̄1/2), the result follows.

2.8 Simulation results

A (version of) Algorithm 1 was implemented in Matlab. The following model was

used for simulations:

Yi = sign [f(Xi) + εi] , ε ∼ N (0, σ2), i = 1 . . . 34

f(x) = x

(
1 + sin

5

x

)
sin(4πx), σ2 = 0.2.

Note that in this case sign η = sign f , where η is the regression function η(x) =

E(Y |X = x), see figure 3. Figure 4 shows the classifier output by the active algorithm

Figure 3: Graph of f(x) and sign f(x)

with label budget N = 34 that performed 3 iterations. Figure 5 shows the plug-

in classifier based on the wavelet threshold estimator produced by Matlab wavelet

toolbox. Clearly, the output of the active learning algorithm is closer to the true

underlying model.
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Figure 4: Classifier produced by Algorithm 1; each iteration marked with different
color

Figure 5: Plug-in classifier based on wavelet threshold estimator

2.9 Concluding remarks

The results above give some insight into the limitations and possible improvements

of active methods over passive learning for a broad class of underlying distributions.

However, as seen from Theorems 2.6.1, 2.6.2, 2.6.3, there is a gap between the lower

and upper bounds following from our analysis. For the case 0 < β ≤ 1, the gap is

logarithmic but we consider it satisfactory for our purposes. For the general case,

there is a difference in the polynomial rate of convergence.

We believe that the reason for this difference is the fact that Theorem 2.6.3 gives
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the worst-case analysis, in a sense that the regular approximation of the active set is

assumed to have very high resolution level (in other words, it uses the dyadic cubes

with small edge length) compared to the ’optimal’ resolution level associated to the

estimator of regression function. However, in many cases the situation might be far

from the worst case. For example, if the sequence of resolution levels {m̂k} grows

arithmetically and βγ ≤ d, then the rate of convergence resulting from the same

analysis will match the lower bound of Theorem 2.6.1 up to logarithmic terms. How-

ever, at this point we are unaware of the natural and convenient way to describe this

gradation.

Another question one might ask is if the piecewise-polynomial estimators give a prov-

able advantage over piecewise-constant estimators during the intermediate stages

of the algorithm. An alternative method could proceed as Algorithm 1, using the

piecewise-constant estimators to reduce the size of the active set, and construct the

more powerful piecewise-polynomial estimator on the last iteration. While such an

approach seems appealing for practical purposes due to computational simplicity, it

results in suboptimal convergence rate N−µ
β(1+γ)

2β+d−(β∧1)γ which differs from the rate of

Theorem 2.6.3 by a multiplicative factor µ := 2(β∧1)+d
2(β∨1)+d

≤ 1.

Finally, we note that our algorithm can be viewed as a method for level set estima-

tion. This gives a possibility of applications to multi-label classification tasks viewed

as simultaneous estimation of several level sets. A work in this direction is one of our

future priorities.

59



CHAPTER III

SPARSE RECOVERY IN INFINITE DICTIONARIES

3.1 Introduction

Many prediction problems encountered in today’s world involve high-dimensional

data, often resulting in a situation when the number of available observations is

smaller than the number of parameters. At the same time, it was noticed that the

number of significant features might be a lot smaller (this is often referred to as

“sparsity assumption”). If these features were known in advance, classical parametric

methods would provide satisfactory solutions. Unfortunately, significance of param-

eters has to be learned from the data as well, and this problem led to development

of modern methods such as LASSO [83] and Dantzig Selector [20], along with several

modifications. Other methods used in large margin classification, such as Boosting

[34], combine simple classifiers from a high-dimensional class to produce a linear com-

bination with very strong generalization properties, and avoid overfitting at the same

time. Much effort has been made to understand the reasons for this type of behavior

(e.g., [77], [60]).

Most of the aforementioned problems can be stated in the framework of dictionary

learning, and we proceed with its more detailed description.

3.2 Dictionary learning: probabilistic framework

Let S be a measurable space, T ⊂ R, and let (X, Y ) be a random couple in S × T

with unknown distribution P . The marginal distribution of X will be denoted by Π.

Let (X1, Y1), . . . , (Xn, Yn) be the training data consisting of n i.i.d. copies of (X, Y ).

In what follows, we will denote by Pn the empirical distribution based on a given
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sample of n training examples. Similarly, Πn will denote the empirical measure based

on the sample (X1, . . . , Xn). The integrals with respect to P and Pn are denoted by

Pg := Eg(X, Y ), Png :=
1

n

n∑
i=1

g(Xi, Yi).

Similar notations will be used for Π,Πn and other measures. Let `(y, ·) be the loss

function such that for all y ∈ T, `(y, ·) is convex. As suggested by its name, `(y, f(x))

measures the loss suffered from predicting Y by f(X). Choice of the loss is usually

motivated by the nature of the problem, for example the squared loss `(y, f(x)) =

(y − f(x))2 for regression or `(y, f(x)) = φ(yf(x)) in binary classification, where φ

is a convex nonincreasing function with φ(0) = 1. The latter is sometimes called

the surrogate loss [9] and serves as a convex majorant of the (non-convex) binary

loss `(y, f(x)) = I {yf(x) ≤ 0}. Common choices for the function φ are φ(z) = e−z

(boosting), φ(z) = log2(1 + e−z) (logistic regression), among others. For a function

f : S 7→ R, let (` • f)(x, y) := `(y, f(x)).

A dictionary (or a base class) is a given family H of measurable functions equipped

with a σ-algebra and with a finite measure µ. For most results, we will assume that the

elements of the dictionary are uniformly bounded by a constant M > 0 (and will take

M = 1 for simplicity). This assumption is very natural when the response variable is

known to be bounded (e.g., in binary classification problem). In other cases, such as

density estimation, it is sometimes possible to relax boundedness assumption.

The goal of dictionary learning is to estimate the optimal (unknown) prediction rule

g∗ := argmin P`(y, g(x)) (where the minimum is taken over all measurable functions)

by a linear (convex) combination of the elements of H. Common examples of the

dictionaries include:

1. A subset of a basis, such as wavelets, splines, trigonometric polynomials, etc.

2. A collection of pre-defined estimators of g∗ obtained by different methods. In

this case, the goal is to “aggregate” these estimators to obtain a new one which
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will perform at least as good as each of the initial candidates.

3. A location familyH = {φ(· − t), t ∈ R}, where φ is a bounded density function.

This dictionary can be useful in deconvolution problem.

Cardinality of the dictionary can be very large (or even infinite), so the sparsity

assumptions translates into the belief that there exists a linear combination with

only few non-zero coordinates. A common way to recover sparse solution is to solve

a penalized empirical risk minimization problem. For example, in a popular case of

regression with a dictionary of cardinality N it takes the form

λ̂ := argmin λ∈RN
1

n

n∑
i=1

(
Yi −

N∑
j=1

λjhj(Xi)

)2

+ pen(λ),

where pen(λ) is a penalty term. The natural choice of the penalty would be pen(λ) :=

ε‖λ‖0 = ε
N∑
i=1

I {λi 6= 0}, but there is little hope to solve the resulting problem. In-

stead, pen(λ) := ε‖λ‖1 = ε
N∑
i=1

|λi| is used (here, ε is a properly chosen regularization

parameter). In the latter case, the problem becomes convex and can be solved by

existing methods. This is one of the possible formulations of LASSO (Least Absolute

Shrinkage and Selection Operator). This problem attracted a lot of attention of the

research community due to excellent performance on the real-world data. Significant

contributions to theoretical explanations of this method were made in the works of D.

Donoho [31], [32], who established connections to the properties of high-dimensional

polytopes.

It turns out that in some cases LASSO exactly identifies relevant features in the

support of λ. In particular, this happens when the dictionary possesses some “almost-

orthogonality” properties with respect to L2(Π), such as the “restricted isometry”

condition in the works of E. Candès, J. Romberg and T. Tao [22], [20]. More specifi-

cally, the restricted isometry constant δd(Π) is the minimal δ such that for all λ ∈ RN
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with at most d non-zero coefficients

(1− δ)‖λ‖2 ≤

∥∥∥∥∥
N∑
i=1

λihi

∥∥∥∥∥
L2(Π)

≤ (1 + δ)‖λ‖2.

A result in [21] (also see [22]) states that in the noiseless case, (a version of) LASSO

is able to exactly recover an unknown λ∗ with d non-zero coefficients whenever δ2d <
√

2−1. In the presence of noise, recovery is still possible under the same assumption,

with an error being proportional to the noise rate.

Other important works on the variants of LASSO include [17], [89], [49], [96], [11],

[67], to name a few. In a notable paper by P. Bartlett, S. Mendelson and J. Neeman

[10], powerful analysis methods were used to handle situations when elements of

the dictionary are not uniformly bounded. In [90], authors analyze and compare

different conditions on the dictionary, including the “restricted eigenvalue” condition

introduced by P. Bickel, Ritov and Tsybakov [11] and ”compatibility condition” of S.

van de Geer [88].

In a series of papers [51], [49], [50] V. Koltchinskii introduced the notion of “align-

ment coefficient” and successfully applied it to study the variants of LASSO and

Dantzig selector. Our work continues the line of research started in [51]: this pa-

per investigates the problem of sparse mixture recovery, meaning that the unknown

“true” solution is believed to have a good approximation in the convex hull of the

dictionary (rather than in the linear span). A canonic example of this type of prob-

lems is density estimation with L2 loss (in particular, the dictionary is a family of

probability density functions). In this case, it is possible to replace ‖λ‖1 penalty by

the (negative) entropy H(λ) :=
N∑
i=1

λi log λi. The advantage of this penalty is strict

convexity, which allows to study random error and approximation error separately

and leads to interesting theoretical results. Similar ideas were previously investigated

in [27] in the context of aggregation with exponential weights.

Our main goal is to understand what happens in the case of (possibly uncountable)
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infinite dictionary and continuos mixtures. In particular, such dictionaries might

contain highly correlated (or even linearly dependent) elements, and the restricted

isometry-type conditions do not have direct analogues. Instead, we define a version

of alignment coefficient, and it turns out that geometric assumptions can often be

expressed in terms of Sobolev-type norms; the details are discussed below.

We shall identify relevant parameters which control the risk, and prove sparsity oracle

inequalities for prediction problems (Corollary 3.5.6) and density estimation (Corol-

lary 3.6.3). In the latter case, the oracle inequality is exact (see the remark after

Theorem 3.6.1).

Some parts of this work appeared previously in the joint paper with V. Koltchinskii

[54], and the present chapter is mainly based on it (namely, the part devoted to pre-

diction problems). Results of section 3.6 on L2-density estimation were not previously

published.

3.3 Problem statement, notations and main assumptions

Suppose we are given a probability measure Λ on H such that λ = dΛ
dµ

. The (negative)

entropy H(λ) is defined via

H(λ) :=

∫
H

λ(h) log λ(h)dµ(h).

In what follows, we shall only consider densities with finite entropies. Assume that

the mapping S ×H 3 (x, h) 7→ h(x) is measurable, and let fλ denote the mixture of

the functions from dictionary H with respect to λ:

fλ(·) :=

∫
H

h(·)λ(h)dµ(h).

The excess risk E(fλ) of the estimator fλ is defined as the difference of true risk and

the minimal risk, that is

E(fλ) = P (` • fλ)− inf
g:S 7→R

P (` • g) = P (` • fλ)− P (` • f∗) .
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Throughout the chapter, we make the following assumption:

Assumption 3.1. inf
f :S 7→R

P (` • f), where the infimum is taken over all measurable

functions, is attained at some uniformly bounded function f∗.

Let D be a convex set of probability densities on H having finite entropies. Con-

sider the following penalized risk minimization problem:

λε := argminλ∈D

[
P (` • fλ) + εH(λ)

]
(3.3.1)

together with its empirical version:

λ̂ε := argminλ∈D

[
Pn(` • fλ) + εH(λ)

]
. (3.3.2)

Since λ̂ε depends only on the data, we can use it as an estimator of unknown λε. Note

that, due to the convexity of the loss, both (3.3.1) and (3.3.2) are convex optimization

problems. We will use the notations Λε, Λ̂ε for the probability measures with densities

λε, λ̂ε, respectively.

One main goal will be to show that the ”approximate sparsity“ of the true pe-

nalized solution λε implies that the corresponding empirical solution λ̂ε possesses the

same property with a high probability. More precisely, it will be said that λε is ”ap-

proximately sparse“ if there exists a measurable set H′ ⊂ H such that Λε(H \H′) is

small and, at the same time, there exists a subspace L ⊂ L2(Π) of ’small’ dimension

d that provides a good L2(Π)-approximation of the functions from the set H′. We will

show that in this case the empirical solution λ̂ε is also approximately supported on the

same set H′ in the sense that Λ̂ε(H \H′) is small. Thus, both the empirical solution

λ̂ε and the true solution λε follow the same “sparsity pattern”: they are concentrated

on the same set of functions H′ which can be well approximated by a linear subspace

of small dimension. Our next goal is to obtain probabilistic bounds on the random

error
∣∣E(fλ̂ε)− E(fλε)

∣∣ in terms of characteristics of the sparsity of the problem, such

as the measure Λε(H \H′) and the dimension d of the approximating space L. We
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focus only on the losses of quadratic type (see Definition 3.1 below) and this allows

us to reduce the problem to bounding the L2(Π)-error ‖fλ̂ε − fλε‖
2
L2(Π). At the same

time, we derive upper bounds on the Kullback-Leibler type distance between λ̂ε and

λε.

Another problem is to bound the approximation error E(fλε) which, for the

losses of quadratic type, is equivalent to bounding the L2(Π)-approximation error

‖fλε − f∗‖2
L2(Π). We show that the size of this error is small if there exists an oracle

λ ∈ D that is “sparse” in the sense that it is concentrated on a “small” set of func-

tions H′ ⊂ H and, at the same time, possesses certain regularity properties, often

expressed in terms of Sobolev-type norms of log λ.

As it has been observed previously in the case of sparse recovery problems for

finite dictionaries (see [49], [51]), the fact that the penalty is strictly convex allows us

to study the random error independently of the approximation error, but geometric

parameters of the dictionary needed to control these quantities are not the same.

In the end of this Chapter, we present some applications and examples showing

how the quantities involved in the bounds can be computed. This allows us to state

the final versions of oracle inequalities for these specific cases. The main tools used

in the proofs include Talagrand’s concentration inequality, Dudley’s entropy bound

for subgaussian processes, symmetrization and contraction inequalities. Details and

references for these results are given in Chapter 1.

3.4 Preliminaries

Below, we formulate some basic results that become a starting point of subsequent

detailed analysis.

3.4.1 Assumptions on the loss

Assume that:
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(1) for all y ∈ T , `(y, ·) is a convex twice differentiable function, `′′u is uniformly

bounded in T × [−1, 1] and

sup
y∈T

`(y; 0) < +∞, sup
y∈T
|`′u(y; 0)| < +∞.

(2)

τ :=
1

2
inf
y∈T

inf
|u|≤1

`′′u(y, u) > 0.

Definition 3.1. The loss function ` satisfying assumptions (1), (2) will be called the

loss of quadratic type.

In particular, our assumptions imply that

τ‖fλ − f∗‖2
L2(Π) ≤ E (fλ) ≤ C‖fλ − f∗‖2

L2(Π),

where C = sup
y,u

`′′u(y, u). Moreover, the following proposition also holds for the losses

of quadratic type:

Proposition 3.4.1. There exists a constant C > 0 depending only on ` such that for

all λ, λ̄ ∈ D,

|E(fλ̄)− E(fλ)| ≤ C

[
‖fλ̄ − fλ‖2

L2(Π)

∨√
E(fλ)‖fλ̄ − fλ‖L2(Π)

]
.

Proof. Since ` is a loss function of quadratic type, the first order Taylor expansion

implies that

(` • fλ̄)(x, y)− (` • fλ)(x, y) = (`′ • fλ)(x, y)(fλ̄ − fλ)(x) + ρ(x, y),

where |ρ(x, y)| ≤ C (fλ̄ − fλ)
2 (x). Integrating with respect to P yields

E(fλ̄)− E(fλ) = 〈`′ • fλ, fλ̄ − fλ〉L2(P ) + Pρ, (3.4.1)

where

|Pρ| ≤ C‖fλ̄ − fλ‖2
L2(Π) (3.4.2)
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Since, for all uniformly bounded functions h : S 7→ R, P (`′ • f∗)h = 0, we have

〈`′ • fλ, fλ̄ − fλ〉L2(P ) = 〈`′ • fλ − `′ • f∗, fλ̄ − fλ〉L2(P ),

and, using the Lipschitz condition for the loss `, we get∣∣∣〈`′ • fλ, fλ̄ − fλ〉L2(P )

∣∣∣ ≤ C‖fλ − f∗‖L2(Π)‖fλ̄ − fλ‖L2(Π) ≤ C

√
E(fλ)

τ
‖fλ̄ − fλ‖L2(Π).

(3.4.3)

It remains to combine (3.4.3) with (3.4.1) and (3.4.2).

Previously mentioned loss functions, such as quadratic loss `(y, fλ(·)) = (y − fλ(·))2,

exponential loss `(y, fλ(·)) = e−yfλ(·) and the logit loss `(y, fλ(·)) = log2

(
1 + e−yfλ(·))

satisfy our assumptions.

3.4.2 Assumptions on the dictionary

Complexity of the dictionary H will be characterized in terms of the continuity mod-

ulus of a certain (conditionally) Gaussian process. In particular, our assumptions

allow for the unified treatment of conditions on covering and bracketing numbers.

For h ∈ H, let

Gn(h) :=
1

n

n∑
i=1

gih(Xi), h ∈ H,

where {gi}ni=1 is a sequence of iid N(0, 1) random variables, independent of Xi’s.

Conditionally on X’s, this is a Gaussian process. Let

H(u) :=
{
h1 − h2 : hi ∈ H, ‖h1 − h2‖L2(Π) ≤ u

}
.

We will make the following assumption on Gn(·): there exists a sequence of functions

wn(u) such that

√
n E sup

f∈H(u)

|Gn(f)| ≤ wn(u),

w(u) := lim sup
n→∞

wn(u), lim
u→0

w(u) = 0. (3.4.4)
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In particular, this implies that H is Π-Donsker [91]. Moreover, let

Ω1/2(δ) := K

√
2D∫
δ

w(u)
du

u2
,

where K is a numerical constant and D = diamL2(Π)(H). Expression for wn(u) can

often be obtained from the following complexity assumption on the base class H :

there exists a nonnegative non-increasing function T such that T (u)→∞ as u→ 0,

T (1/u) is regularly varying at ∞ with exponent α ∈ [0, 2) 1 and, with probability 1,

logN(H;L2(Πn);u/2) ≤ T

(
u

‖F‖L2(Pn)

)
, u > 0, (3.4.5)

where N(H;L2(Πn);u/2) is the covering number of H with respect to L2(Π) (see

Definition 1.3) and F is the (measurable) envelope of the class H, meaning that

|h(x)| ≤ F (x) for every h ∈ H and x ∈ S. Typical examples include T (u) =

log A
u
, A > 0; T (u) = u−α, α ∈ (0, 2).

When working with regularly varying functions, we will frequently use some well-

known properties. One important fact states that
x∫

0

√
T (u)du ≤ C(T )x

√
T (x)

for all x > 0. For this and other facts, see [75], in particular, Theorem 2.1.

3.4.3 Uniformly bounded base classes

If the elements of H are uniformly bounded by 1 (so that F ≡ 1 is the envelope

function), we have the following result:

Proposition 3.4.2. Assume (3.4.5) is satisfied. Then

wn(u) ≤ C

[
u
√
T (u)

∨ T (u)√
n

]
,

w(u) ≤ Cu
√
T (u),

Ω1/2(δ) ≤ K̃
√
T (δ) log

1

δ
.

1this means lim
u→∞

T (1/(su))
T (1/u) −→ sα for some α ∈ [0, 2) and any s > 0.
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Proof. The proof repeats an argument of Theorem 3, [39], but one has to apply

contraction inequality for the Gaussian sums (see Corollary 3.17 in [62]) instead of

the similar result for Rademacher processes.

Slightly different argument (which does not use contraction inequality) is given in

Proposition 3.4.4 below.

In particular, one can take T (u) = logN for a base class of finite cardinality N

or T (u) = (2V + 1) log
(
A
u

)
if a base class is a subset of a VC-subgraph family of

VC-dimension V (for the definition of VC-dimension, see [91], Chapter 2.6).

Assumption on the covering numbers with respect to ‖ · ‖L2(Pn) can be replaced

by the similar assumption on the bracketing entropy with respect to a single norm

‖ · ‖L2(P ).

Definition 3.2 (Bracketing). Given two real-valued functions l and u such that l ≤ u

and ‖l−u‖L2(Π) ≤ ε, the ε-bracket [l, u] is the set of all f : l ≤ f ≤ u. The bracketing

number N[ ](H, L2(P ), ε) is the minimal number of ε-brackets needed to cover H. Here,

the upper and lower bounds u and l do not need to belong to H.

Proposition 3.4.3. Suppose that there exists a nonnegative non-increasing function

T1 such that T1(u)→∞ as u→ 0, T1 is regularly varying of exponent 0 < α < 2 and

logN[ ](H, L2(P ), u) ≤ T1(u). (3.4.6)

Then

wn(u) ≤ C

2u∫
0

√
1 + T1(s)ds.

Proof. First, we reduce the bound on the continuity modulus of Gn(h) to the corre-

sponding bounds on the empirical process Zn(h) :=
√
n(Pn − P )h, since the brack-

eting entropy controls the latter quantity. Reduction is done with the help of de-

symmetrization and general multiplier inequalities. First, note that by Theorem
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1.2.6 for any k ≥ 1

√
k E sup

‖h1−h2‖L2(Π)≤u
|Rk(h1 − h2)| ≤ 2E sup

‖h1−h2‖L2(Π)≤u
|Zk(h1 − h2)|+ u, (3.4.7)

where we used that by Hölder’s inequality sup
‖h1−h2‖L2(Π)≤u

P |h1−h2| ≤ u. Here, Rk(h) is

the Rademacher process, see Chapter 1 for definition. Next, by the general multiplier

inequality (Lemma 2.9.1 in [91])

√
nE sup

‖h1−h2‖L2(Π)≤u
Gn(h1 − h2) ≤ C max

1≤k≤n

√
k E sup

‖h1−h2‖L2(Π)≤u
|Rk(h1 − h2)|.

Combined with (3.4.7), this gives

√
nE sup

‖h1−h2‖L2(Π)≤u
Gn(h1 − h2) ≤ C

(
u+ max

1≤k≤n
E sup
‖h1−h2‖L2(Π)≤u

|Zk(h1 − h2)|

)
.

(3.4.8)

Note that the bracketing number for the class H−H satisfies

N[ ](H−H, L2(P ), ε) ≤ N2
[ ](H, L2(P ), ε/2).

Finally, a sharp version of M. Ossiander’s bracketing theorem due to M. Talagrand

(Theorem 2.7.10 in [80]) combined with Dudley’s entropy integral estimate for the

generic chaining complexity (Proposition 2.7.10 in [80]) yields

E sup
‖h1−h2‖L2(Π)≤u

|Zk(h1 − h2)| ≤ C

2u∫
0

√
1 + T1(u)du. (3.4.9)

The result now follows from (3.4.8).

Bracketing entropy is useful when one has to deal, for example, with base classes

that are Lipschitz in parameter: assume that H = {ht, t ∈ I} where I is the index

space equipped with distance D(·, ·). If for any t, s in I,

|hs(x)− ht(x)| ≤ D(s, t)F1(x).

and EF 2
1 (X) < ∞, then the bracketing entropy logN[ ](ε,H, L2(P )) is bounded by

logN
(

ε
‖F‖ , I,D

)
-the metric entropy of I with respect to D.
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3.4.4 Beyond the uniformly bounded base classes

If the envelope F is not uniformly bounded or ‖F‖∞ is prohibitively large, one can

use a slightly different approach which only requires that F (X) possesses certain ex-

ponential moments.

Let Ψ := ‖F‖ψ2 , where ‖F‖ψ2 := inf
{
C > 0 : E exp

(
F 2(X)
C2

)
≤ 2
}

(see also Defini-

tion 1.1). Moreover, suppose (3.4.5) holds for a suitable function T (u).

Proposition 3.4.4. If the aforementioned conditions are satisfied, then

wn(u) ≤ C · U(u, n)T 1/2

(
U(u, n)

2Ψ

)
,

w(u) ≤ CuT 1/2
( u

2Ψ

)
,

Ω1/2(u) ≤ KT 1/2
( u

2Ψ

)
log

Ψ

u
,

where U(u, n) :=

[
u
∨
C

(
Ψ
√
T (1/

√
n) logn

n

)1/2
]

.

Proof. The argument follows main steps of the proof of Theorem 3 in [39]. Let

u2
n := sup

f∈H(u)

Pn f
2. By Theorem 1.2.8 and assumptions on T ,

wn(u) ≤ CE
2un∫
0

√
T

(
ε

‖F‖L2(Pn)

)
dε = CE

2un∫
0

√
T

(
ε

‖F‖L2(Pn)

)
dεI

{
‖F‖L2(Pn) ≤ 2Ψ

}

+ CE
2un∫
0

√
T

(
ε

‖F‖L2(Pn)

)
dεI

{
‖F‖L2(Pn) > 2Ψ

}
.

Note that EF 2(X) ≤ Ψ2 (by elementary properties of the Orlicz norm). By Theorem

1.2.2,

P
(
‖F‖2

L2(Pn) > 4Ψ2
)
≤ 2e−cn.

Moreover, making change of variables u = ε
‖F‖L2(Pn)

we get

2un∫
0

√
T

(
ε

‖F‖L2(Pn)

)
dε ≤ ‖F‖L2(Pn)

2∫
0

√
T (u)du ≤ C(T )‖F‖L2(Pn).
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Now Hölder’s inequality implies that the second term in the sum is bounded by

C(T )‖F‖L2(P ) exp(−cn). (3.4.10)

To bound the first term, we will first show that

Eu2
n ≤ u2 + C

uΨ1/2

√
(T (1/

√
n) log n)

1/2

n

∨
Ψ

(T (1/
√
n) log n)

1/2

n

 := B2

(3.4.11)

Indeed, by symmetrization inequality (Theorem 1.2.6)

Eu2
n ≤ u2 + 2E sup

f∈H(u)

|Rn(h2)|.

To bound E sup
f∈H(u)

|Rn(h2)|, we will apply Theorem 3.16 from [53]. It implies that

E sup
f∈H(u)

|Rn(h2)| ≤ K

[
u

√
Γn,∞(H(u))

n

∨ Γn,∞(H(u))

n

]
,

where Γn,∞(H(u)) is the so-called generic chaining complexity that can be bounded

by Dudley’s entropy integral as follows [80]:

Γn,∞(H(u)) ≤ E

2‖F‖L∞(Pn)∫
0

√
logN(H(u), ε, L∞(Pn))dε.

To estimate the latter quantity, note thatN(H(u), ε, L∞(Pn)) ≤ N
(
H(u), ε√

n
, L2(Pn)

)
,

hence

logN(H(u), ε, L∞(Pn)) ≤

√
T

(
ε√

n‖F‖L∞(Pn)

)
and

Γn,∞(H(u)) ≤ E

2‖F‖L∞(Pn)∫
0

√
T

(
ε√

n‖F‖L∞(Pn)

)
dε ≤

≤ CT 1/2

(
1√
n

)
E‖F‖L∞(Pn).

It remains to use the well-known fact that for random random variables ξ1, . . . , ξn

with finite ψ2-norms we have Emaxi |ξi| ≤ C
√

log nmaxi ‖ξi‖ψ2 (see Lemma 2.2.2 in
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[91]). Taking ξi := F (Xi) yields (3.4.11).

The rest follows from a simple computation: by Jensen’s inequality, we have

E
2un∫
0

√
T

(
ε

‖F‖L2(Pn)

)
dεI

{
‖F‖L2(Pn) ≤ 2Ψ

}
≤

2E1/2u2
n∫

0

√
T
( ε

2Ψ

)
dε

≤ C ·B T 1/2

(
B

2Ψ

)
,

which together with (3.4.11) implies the result.

When class H is finite or has finite VC-dimension, we have the following result:

Corollary 3.4.5. Assume that conditions of the previous Proposition hold with (a)

T1(u) ≡ logN or with (b) T2(u) = V log K
u

. Then

(a) wn(u) ≤ C
√

logN
[
u
∨

Ψ1/2 (logn logN)1/4

√
n

]
;

(b) wn(u) ≤ C
√
V · U(u, n) log1/2 2KΨ

U(u,n)
, where U(u, n) :=

[
u
∨
C

√√
VΨ logn
n

]
.

3.4.5 Existence of solutions

We continue our investigation with a general study of problem (3.3.1) and provide

sufficient conditions of existence of a solution. Recall that all densities are assumed

to have finite entropies.

Lemma 3.4.6. The entropy functional is lower semi-continuous in L1(µ) and Hölder

continuous in every bounded subset of Lp(µ) for p > 1.

Proof. The functional is lower semi-continuos iff the level sets Lt = {λ : H(λ) ≤ t}

are closed. Suppose λn ∈ Lt, λn → λ0 in L1. We can extract the subsequence λnk

converging to λ0 µ - a.s. Noting that s log(s) + e−1 ≥ 0 and applying the Fatou

lemma to the sequence {λnk log(λnk)}, we derive the result. Note that here we did

not use the assumption that µ is a finite measure.
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To prove the second part of the claim, we use a different approach that allows to

get a stronger result in case of finite measure µ.

Note that for positive t,

t log t = t+

t∫
0

log(x)dx,

which implies

t1 log t1 − t2 log t2 = (t1 − t2) +

t1∫
t2

log(x)dx (3.4.12)

The following two elementary inequalities are true for α, β > 0 and γ > 1:

| log(t)| ≤ Cα,β(tα + t−β),

(t+ s)γ ≤ 2γ−1 (tγ + sγ) .

Let α = p− 1, γ = p
p−1

. Combined with (3.4.12), this yields to

|H(λ2)−H(λ1)| ≤
∫
H

|λ1 − λ2|dµ+ C1

∫
H

|λ1
1−β − λ2

1−β|dµ+ C2

∫
H

|λp1 − λ
p
2|dµ.

Given ‖λ1 − λ2‖p = ε, we can estimate every term using Hölder’s inequality:∫
H

|λ1 − λ2|dµ ≤ µ(H)
p−1
p · ε,

∫
H

|λ1
1−β − λ2

1−β|dµ ≤
∫
H

|λ1 − λ2|1−βdµ ≤ µ(H)
p−1+β
p · ε1−β,

∫
H

|λp1 − λ
p
2|dµ ≤

∫
H

p(λp−1
1 + λp−1

2 )|λ1 − λ2|dµ ≤ p2
1
p (‖λ1‖p + ‖λ2‖p)

p−1
p · ε.

Finally, this implies that for p > 1 the entropy functional is Hölder continuous in Lp

ball of any finite radius with Hölder exponent less then 1.

Now we are ready to prove the existence of a solution of (3.3.1), (3.3.2).

Theorem 3.4.7. Problems (3.3.1), (3.3.2) have unique solutions in every convex

weakly compact subset D of Lp, p ≥ 1. Moreover, if there exists λ ∈ D which is

positive µ - a.e., the solutions are positive µ-a.e.
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Proof. Let

F (λ) := P (` • fλ) + εH(λ), λ ∈ D

Under the assumptions on the loss, F is convex, bounded from below and lower semi-

continuous. This follows from Lemma 3.4.6 for the entropy term; it is easy to see that

P (` • fλ) is continuous as well: assume ‖λn−λ0‖1 → 0. Then, denoting v := λn−λ0,

|P (` • fλn)− P (` • fλ0)| = |P (`′ • fλ0+τv)(fλn − fλ0)| ≤

≤ CP |fλn − fλ0| ≤ C‖λn − λ0‖1 → 0,

where we used uniform boundedness of the dictionary and convexity of ` with respect

to the second variable.

Now we can conclude that the level sets Lt = {λ : F (λ) ≤ t} are closed and convex.

Mazur’s theorem (see [61], Theorem 2.1) implies that they are also closed in weak

topology, so F is weakly lower semi-continuos.

Given a minimizing sequence λn, we can extract a weakly convergent subsequence

λnk
σ−→λ∞,

and conclude that λ∞ ∈ D, −∞ < F (λ∞) ≤ lim inf
k→∞

F (λnk) .

Convexity of the set D and strict convexity of the functional F implies the uniqueness

of the solution of (3.3.1). Replacing P by Pn, we get similar statements for (3.3.2).

It remains to prove the last claim. Suppose that λε = argminλ∈DF (λ) is such that for

some A ⊂ H with µ(A) > 0

λε(h)IA(h) ≡ 0

where IA stands for the indicator function of the set A. Take λ ∈ D which is positive
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µ - a.e. and consider

d

dt |t=τ

∫
H

(λε + t(λ− λε)) log(λε + t(λ− λε))dµ =

=

∫
H

d

dt |t=τ
(λε + t(λ− λε)) log(λε + t(λ− λε))dµ =

=

∫
H

(λ− λε) log(λε + τ(λ− λε))dµ,

where the change of order of differentiation and integration is correct due to proposi-

tion 3.4.8 below. Let tn be a monotone sequence with t0 < 1, tn → 0. The function

(0, t0] 3 τ 7→ (λ− λε) log(λε + τ(λ− λε))

is non-decreasing and
∫
H

(λ − λε) log(λε + t0(λ − λε))dµ < ∞(by Proposition 3.4.8),

hence, by the monotone convergence theorem and our assumption on the set A,∫
H

(λ− λε) log(λε + tn(λ− λε))dµ→ −∞ as n→∞.

It remains to use the Mean Value theorem to conclude that there exists τ0 > 0 such

that F (λε + τ0(λ− λε)) < F (λε) leading to contradiction.

Typically, D would be a convex uniformly integrable subset of L1(µ). Uniform

integrability holds in particular when

sup
λ∈D

∫
|λ log λ|dµ <∞,

(this is just the application of the well-known criterion of de la Vallee Poussin, see

[14]). Another common example is the intersection of some Lp(µ)-ball for p > 1 with

the cone of probability densities, where µ is a finite measure.

3.4.6 Differentiability of the risk and of the entropy

To derive necessary conditions of the minima in the optimization problems (3.3.1),

(3.3.2), we have to study differentiability properties of the functions involved in these
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problems. For F : D 7→ R, λ ∈ D and ν such that λ̄ := λ + t0ν ∈ D for some t0 > 0,

denote

DF (λ; ν) := lim
t↓0

F (λ+ tν)− F (λ)

t
,

provided that the limit exists. DF (λ; ν) is the (directional) derivative of F at point

λ in the direction ν.

First note that, under our assumptions on the loss function `, both the true risk

D 3 λ 7→ P (` • λ) =: L(λ)

and the empirical risk

D 3 λ 7→ P (` • λ) := Ln(λ)

have directional derivatives at any point λ ∈ D in the direction of any other point

λ̄ = λ+ t0ν ∈ D, t0 > 0. Moreover, the following formulas hold:

DL(λ, ν) = P (`′ • fλ)fν (3.4.13)

and

DLn(λ, ν) = Pn(`′ • fλ)fν . (3.4.14)

Indeed, this is directly implied by our assumptions on the uniform boundedness of

the base class and differentiability of the loss function.

Proposition 3.4.8. If λ̄ log λ ∈ L1(µ), where λ̄ = λ + t0ν ∈ D, t0 > 0, then the

directional derivative DH(λ; ν) exists and

DH(λ; ν) =

∫
H

log(λ) νdµ. (3.4.15)

In particular, this is true if, for some t0 > 0, λ̄ = λ+ t0ν ∈ D and λ̄1 = λ− t0ν ∈ D.

Proof. Due to the convexity of λ log λ, the function

[0, t0] 3 t 7→ (λ+ tν) log(λ+ tν)
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is also convex. Therefore,

[0, t0] 3 t 7→ (λ+ tν) log(λ+ tν)− λ log λ

t

is a nondecreasing function. Take a decreasing sequence {tn}n≥0, tn → 0 as n → ∞

and consider

H(λ+ tnν)−H(λ)

tn
−
∫
H

log(λ)νdµ =∫
H

[
(λ+ tnν) log(λ+ tnν)− λ log λ

tn
− (log λ+ 1)ν

]
dµ. (3.4.16)

The sequence of integrands in the right hand side monotonically decreases to 0. More-

over, for n = 0, the integrand is integrable under the assumption λ̄ log λ ∈ L1(µ), and

the first claim follows by monotone convergence.

If, for some t0 > 0, λ̄ = λ + t0ν ∈ D and λ̄1 = λ− t0ν ∈ D, then λ = (λ̄ + λ̄1)/2.

Since λ log λ ∈ L1(µ) and λ̄, λ̄1 are nonnegative functions, this easily implies that

both λ̄ log λ ∈ L1(µ) and λ̄1 log λ ∈ L1(µ), and the last claim follows.

3.4.7 Symmetrized Kullback-Leibler distance

For two densities λ1, λ2 ∈ D, denote

K(λ1|λ2) :=

∫
H

log
λ1

λ2

λ1dµ

the Kullback-Leibler divergence between λ1 and λ2 and let

K(λ1, λ2) := K(λ1|λ2) +K(λ2|λ1)

be the symmetrized Lullback-Leibler distance. It is easy to check that

K(λ1, λ2) =

∫
H

log
λ1

λ2

(λ1 − λ2)dµ.

We will also need the following proposition.

Proposition 3.4.9. For all λ1, λ2 ∈ D,

K(λ1, λ2) = lim
t→0

∫
H

log
(1− t)λ1 + tλ2

tλ1 + (1− t)λ2

(λ1 − λ2)dµ.
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Proof. Note that the function

[0, 1] 3 t 7→ ((1− t)λ1 + tλ2) log((1− t)λ1 + tλ2)

is convex and, hence, its derivative

[0, 1] 3 t 7→ (log((1− t)λ1 + tλ2) + 1)(λ2 − λ1)

is nondecreasing. Similarly, the function

[0, 1] 3 t 7→ (log(tλ1 + (1− t)λ2) + 1)(λ1 − λ2)

is also nondecreasing. Therefore, the function

[0, 1] 3 t 7→ log
(1− t)λ1 + tλ2

tλ1 + (1− t)λ2

(λ1 − λ2)

is nonincreasing. Take a sequence tn ∈ (0, 1) such that tn decreases monotonically to

0. Then the following sequence of functions is nondecreasing{
log

(1− tn)λ1 + tnλ2

tnλ1 + (1− tn)λ2

(λ1 − λ2)

}
n≥1

and it converges as n → ∞ to the function log λ1

λ2
(λ1 − λ2), which is nonnegative.

Note also that for all n

log
(1− tn)λ1 + tnλ2

tnλ1 + (1− tn)λ2

(λ1 − λ2) ∈ L1(µ).

Indeed,

((1− tn)λ1 + tnλ2) log((1− tn)λ1 + tnλ2) ∈ L1(µ)

and, together with the fact that λ1, λ2 ≥ 0, this implies that

λ1 log((1− tn)λ1 + tnλ2) ∈ L1(µ), λ2 log((1− tn)λ1 + tnλ2) ∈ L1(µ)

and similarly

λ1 log(tnλ1 + (1− tn)λ2) ∈ L1(µ), λ2 log(tnλ1 + (1− tn)λ2) ∈ L1(µ).
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As a result, it is easy to conclude that

lim
n→∞

∫
H

log
(1− tn)λ1 + tnλ2

tnλ1 + (1− tn)λ2

(λ1 − λ2)dµ =

∫
H

log
λ1

λ2

(λ1 − λ2)dµ = K(λ1, λ2).

Note that, in principle, the distance K(λ1, λ2) can be infinite for some λ1, λ2 ∈ D.

Lemma below provides the bounds showing that given a sparse density λ1, any other

density λ2 such that K(λ1, λ2) is small will follow the sparsity pattern of λ1.

Lemma 3.4.10. Let λ1, λ2 be two densities from D and Λ1,Λ2 the corresponding

probability measures on H. Then for any measurable H′ ⊂ H

Λ1(H \H′) ≤ 2Λ2(H \H′) +K(λ1, λ2)

Proof. By the well-known inequality between the Kullback-Leibler and Hellinger dis-

tances, for any H′ ⊂ H

K(λ1, λ2) ≥ 2

∫
H

(√
λ1 −

√
λ2

)2

≥ 2

∫
H\H′

(√
λ1 −

√
λ2

)2

≥

≥ 2

∫
H\H′

(
λ1 + λ2 −

λ1

2
− 2λ2

)
= Λ1(H \H′)− 2Λ2(H \H′).

3.5 Main results for prediction problems

In this Section, we will obtain the bounds for approximation error and probabilistic

estimates for the random error which together imply one of our main results – an

oracle inequality for performance of λ̂ε (see Corollary 3.5.6). We will apply similar

techniques to get some results for the problem of density estimation in Section 3.6

(see Corollary 3.6.3).
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3.5.1 Approximation error bounds

In this section, we study the properties of the solution λε of problem (3.3.1). Namely,

we are interested in the size of its excess risk E(fλε) comparing with the excess risk

E(fλ) of oracle solutions λ ∈ D. We will introduce a notion of alignment coefficient of

an oracle λ with the dictionary H. It turns out that, in special examples, this quantity

is related to the degree of “sparsity” of λ as well as to its “regularity” in a proper

sense. For oracles λ ∈ D that are “alligned” with the dictionary reasonably well (so

that the alignment coefficient is not large) the size of excess risk E(fλε) is controlled

by the size of E(fλ) up to an error term of the order ε2. Similarly, the square of

the L2(Π)-approximation error ‖fλε − f∗‖2
L2(Π) is controlled by the same error for the

oracle ‖fλ − f∗‖2
L2(Π) up to an additional error term of the order ε2.

For w ∈ L2(µ), define the alignment coefficient γ(w) to be

γ(w) := sup
{
〈w, u〉L2(µ) : ‖fu‖L2(Π) = 1, 〈u, 1〉L2(µ) = 0

}
.

It is easy to see that, for all constants c ∈ R, γ(w + c) = γ(w).

Similar quantities have been already used in the analysis of approximation error in

the case of finite dictionaries in [49],[51] (actually, in this special case even more

sophisticated definitions have been used that better take into account the geometry

of sparse recovery problems). We will define the Gram operator of the dictionary as

an integral operator K : L2(H, µ) 7→ L2(H, µ),

(Ku)(h) =

∫
H

〈h, h′〉L2(Π) u(h′)µ(dh′).

This is a bounded symmetric nonnegatively definite operator (at least, when µ is a

finite measure), its square root is well defined and we have

‖fu‖2
L2(Π) = 〈Ku, u〉L2(µ) =

〈
K

1
2u,K

1
2u
〉
L2(µ)

.

Therefore,

γ(w) = sup
{
| 〈w, u〉L2(µ) | : ‖K

1
2u‖L2(µ) = 1

}
.
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The last quantity often coincides with ‖K− 1
2w‖L2(µ) for w ∈ Im K1/2. Moreover, we

can always formally define

‖K−
1
2w‖L2(µ) := inf

{
‖u‖L2(µ) : K

1
2u = w

}
when w ∈ Im K

1
2 and set it equal to infinity otherwise. Then we can write γ(w) =

‖K−1/2w‖L2(µ).

Remark: sometimes it might be more convenient to use a slightly different version

of the alignment coefficient

γ̄(w) := sup
{
〈w, u〉L2(µ) : Var(fu(X)) = 1, 〈u, 1〉L2(µ) = 0

}
,

along with the covariance operator

(K̄u)(h) :=

∫
H

covΠ(h, g)u(g)µ(dg), h ∈ H,

where covΠ(h, g) := Π(hg)− Π(h)Π(g). Note that γ̄(w) ≥ γ(w).

If the dictionary H = {h1, . . . , hN} is finite, the Gram operator is represented by

the Gram matrix, which in the simplest case of orthonormal dictionary is equal to

identity matrix. In this case, we have γ(w) = ‖w‖`N2 and in the case of vectors w of

small support there is a clear relationship between the size of γ(w) and the degree

of “sparsity” of the vector w. If the dictionary is not orthonormal, the size of the

alignment coefficient γ(w) is a measure of “alignment” of w with eigenspaces of K :

roughly, if w belongs to the linear span of eigenspaces corresponding to the large

eigenvalues of K, γ(w) is not too large. In many examples of infinite dictionaries,

the space of oracles for which the alignment coefficient is finite could be identified

with the space of functions with some regularity properties, such as Sobolev space

Hs := W2,s, so that the alignment coefficient is bounded by a Sobolev-type norm

of the corresponding function. If the function w consists of several well separated

smooth “spikes”, it happens that the size of γ(w) can be controlled in terms of the

number of “spikes” and, in this sense, it is related to sparsity.
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Below we will be interested in those oracles λ ∈ Λ for which γ(log λ) is not too

large.

Theorem 3.5.1. There exists a constant C > 0 depending only on the loss such that

for all oracles λ ∈ D

‖fλε − fλ‖2
L2(Π) + εK(λε;λ) ≤ C

[
‖fλ − f∗‖2

L2(Π)

∨
γ2(log λ)ε2

]
.

Moreover, the following bound on the excess risk of λε holds

E(fλε) ≤ inf
λ∈D

[
E(fλ)

∨
Cγ(log λ)ε

√
E(fλ)

∨
Cγ2(log λ)ε2

]
and, for all H′ ⊂ H,

Λε(H \H′) ≤ 2Λ(H \H′) +
C

ε

[
‖fλ − f∗‖2

L2(Π)

∨
γ2(log λ)ε2

]
,

Λ(H \H′) ≤ 2Λε(H \H′) +
C

ε

[
‖fλ − f∗‖2

L2(Π)

∨
γ2(log λ)ε2

]
.

The first bound of the theorem means that the true penalized solution λε belongs

to the Kullback-Leibler “ball” around arbitrary oracle λ ∈ D and, at the same time,

the function fλε belongs to the L2(Π)-ball around fλ, the radius of both balls being,

up to a constant, the maximum of the L2(Π)-distance from fλ to the target function

f∗ and γ(log λ)ε. The second bound easily implies that

E(fλε) ≤ inf
λ∈D

[
2E(fλ)

∨
Cγ2(log λ)ε2

]
(the constant 2 in front of E(fλ) can be replaced by 1 + δ, but the constant C then

becomes of the order 1/δ). The last two bounds show that the solution λε and oracles

λ are concentrated on almost the same sets (for the oracles that approximate the

target and are aligned with the dictionary reasonably well).

Proof. Denote

F (λ) := P (` • fλ) + εH(λ), λ ∈ D.
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It follows from (3.4.13), (3.4.14) and Proposition 3.4.8 that, for all λ ∈ D and τ ∈

(0, 1), the directional derivative of F exists at the point λε+τ(λ−λε) in the direction

λ− λε and

DF (λε + τ(λ− λε);λ− λε) =

P (`′ • fλε+τ(λ−λε))(fλ − fλε) + ε

∫
H

(λ− λε) log(λε + τ(λ− λε))dµ. (3.5.1)

Moreover, since the function [0, 1] 3 τ 7→ F (λε + τ(λ − λε)) is convex, its right

derivative, which coincides with DF (λ + τ(λ − λε);λ − λε), is non-decreasing in

τ ∈ [0, 1]. Since λε is the minimum point of F, this implies that, for τ ∈ (0, 1),

DF (λε + τ(λ− λε);λ− λε) = (3.5.2)

= P (`′ • fλε+τ(λ−λε))(fλ − fλε) + ε

∫
H

(λ− λε) log(λε + τ(λ− λε))dµ ≥ 0.

We will subtract both sides of the last inequality from the expression

DF (λ+ τ(λε − λ);λ− λε) =

= P (`′ • fλ+τ(λε−λ))(fλ − fλε) + ε

∫
H

(λ− λε) log(λ+ τ(λε − λ))dµ (3.5.3)

to get

P
(
`′ • fλ+τ(λε−λ) − `′ • fλε+τ(λ−λε)

)
(fλ − fλε) + ε

∫
(λ− λε) log

(1− τ)λ+ τλε
(1− τ)λε + τλ

dµ

(3.5.4)

≤ P (`′ • fλ+τ(λε−λ))(fλ − fλε) + ε

∫
H

(λ− λε) log(λ+ τ(λε − λ))dµ.

Under the assumptions on the loss, in particular, continuity of `′, passing to the limit

as τ → 0, using the dominated convergence and Proposition 3.4.9, we get that the

left hand side of (3.5.4) converges to

P (`′ • fλ − `′ • fλε)(fλ̂ε − fλε) + εK(λ, λε)
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and the first term in the right hand side converges to P (`′ • fλ)(fλ − fλε). As for the

second term in the right hand side of (3.5.4), note that

−(λ− λε)(log(λ+ τ(λε − λ)) + 1) =
d

dτ
(λ+ τ(λε − λ)) log(λ+ τ(λε − λ))

is a nondecreasing function of τ ∈ [0, 1] (since it is the derivative of a convex function).

Because of this, the second term in the right hand side of (3.5.4) is upper bounded

by the integral ∫
H

log λ(λ− λε)dµ.

As a result, we get the following bound:

P (`′ • fλ − `′ • fλε)(fλ̂ε − fλε) + εK(λ, λε) ≤

P (`′ • fλ)(fλ − fλε) + ε

∫
H

log λ(λ− λε)dµ (3.5.5)

Since ` is a loss of quadratic type, we have with some constants C, c > 0 depending

only on ` that

P
(
`′ • fλ̂ε − `

′ • fλε
)

(fλ̂ε − fλε) ≥ c‖fλ̂ε − fλε‖
2
L2(Π)

and also

P (`′ • fλ)(fλ − fλε) = P ((`′ • fλ)− (`′ • f∗))(fλ − fλε) =〈
(`′ • fλ)− (`′ • f∗), fλ − fλε

〉
L2(P )

≤ C‖fλ − f∗‖L2(Π)‖fλε − fλ‖L2(Π).

The definition of γ(log λ) implies that∫
H

log λ(λ− λε) ≤ γ(log λ)‖fλε − fλ‖L2(Π).

Thus, it follows from (3.5.5) that with some constant C > 0 depending only on `

‖fλ − fλε‖2
L2(Π) + εK(λ, λε) ≤

C

[
‖fλ − f∗‖L2(Π)‖fλε − fλ‖L2(Π) + εγ(log λ)‖fλε − fλ‖L2(Π)

]
. (3.5.6)
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To obtain the first bound of the theorem it is enough to upper bound solutions of the

resulting inequality with respect to ‖fλε − fλ‖L2(Π).

To prove the second bound, note that by the definition of λε, for all λ ∈ D,

E(fλε) + ε

∫
H
λε log λεdµ ≤ E(fλ) + ε

∫
H
λ log λdµ,

which implies

E(fλε) ≤ E(fλ) + ε

∫
H

(λ log λ− λε log λε)dµ ≤

E(fλ) + ε

∫
H

log λ(λ− λε)dµ ≤ E(fλ) + εγ(log λ)‖fλ − fλε‖L2(Π), (3.5.7)

and it is enough now to use the first bound on ‖fλ − fλε‖L2(Π).

The last two inequalities follow from the bound on K(λ, λε) and Lemma 3.4.10.

We refer the reader to Section 3.7 for some common examples of base classes and

expressions of the associated alignment coefficient.

3.5.2 Random error bounds

The purpose of this section is to develop exponential bounds on the random error

∣∣E(fλ̂ε)− E(fλε)
∣∣

that depend on the “approximate sparsity” of the true penalized solution λε. Since

we are dealing with a loss ` of quadratic type, bounding random error is essentially

equivalent to bounding the norm ‖fλ̂ε−fλε‖L2(Π). At the same time, we provide upper

bounds on the symmetrized Kullback-Leibler distance between λ̂ε and λε and show

that the “approximate sparsity” of each of them is closely related to the ”approximate

sparsity“ of another one.

We assumed that D is a convex set of probability densities such that λ log λ ∈

L1(µ), λ ∈ D, and solutions of the problems (3.3.1), (3.3.2) exist in D (see Theorem

3.4.7 for sufficient conditions of the existence of solutions).
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Let H′ be a measurable subset of H. In the theorem below, it will be a subset

of the base class (of the dictionary) H on which both λ̂ε and λε are approximately

concentrated. Let L be a finite dimensional subspace of L2(Π) that will be used to

approximate the functions from H′. Let d := dim(L) and denote

UL(x) := sup
g∈L,‖g‖L2(Π)≤1

|g(x)|.

It is easy to check that ‖UL‖L2(Π) =
√
d. Indeed, if φ1, . . . , φd is an L2(Π) orthonormal

basis of L, then

UL(x) := sup

{∣∣∣∣ d∑
k=1

ckφk(x)

∣∣∣∣ :
d∑

k=1

c2
k ≤ 1

}
=

( d∑
k=1

φ2
k(x)

)1/2

,

which immediately implies that ‖UL‖2
L2(Π) = d.We will also use the following quantity:

U(L) := ‖UL‖L∞ + 1.

Note that U(L) is of the order
√
d if there exists an orthonormal basis φ1, . . . , φd of

L such that the functions φj are uniformly bounded by a constant. Finally, denote

ρ(H′;L) := sup
h∈H′
‖PL⊥h‖L2(Π),

where PL⊥ stands for the orthogonal projection on L⊥. We are interested in those

subspaces L for which d and U(L) are not very large and ρ(H′;L) is small enough,

i.e., the space L provides a reasonably good L2(Π)-approximation of the functions

from H′. A natural choice of L might be a subspace spanned by the centers of the

balls of small enough radius δ covering H′; in this case ρ(H′;L) = δ and d is equal to

the cardinality of such a δ-covering.

We do not try to get the exact values of the constants in the inequalities below.

Moreover, such constants as C might have different values in different parts of the

proof (although, its value always depends only on the loss function `).

We are now ready to present the main results. For brevity, we will denote

Q(s) := s

√
Ω(s/

√
d)
∨

wn(s/
√
d), s ∈ (0, 1].
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Theorem 3.5.2. Suppose that assumption on the dictionary (3.4.4) holds. There

exist constants C,D > 0 depending only on ` such that for all measurable subsets

H′ ⊂ H, for all finite dimensional subspaces L ⊂ L2(Π) with d := dim(L) and

ρ := ρ(H′;L),

for all

ε ≥ D · Q(1)√
n

and for all t > 0, the following bounds hold with probability at least 1− e−t :

Λ̂ε(H \H′) ≤ C

[
Λε(H \H′)

∨ d+ tn
nε

∨ 1

ε

Q(ρ)√
n

∨ U(L)Ω(ρ/
√
d) + tn

nε

]
, (3.5.8)

Λε(H \H′) ≤ C

[
Λ̂ε(H \H′)

∨ d+ tn
nε

∨ 1

ε

Q(ρ)√
n

∨ U(L)Ω(ρ/
√
d) + tn

nε

]
(3.5.9)

and

c‖fλ̂ε − fλε‖
2
L2(Π) + εK(λ̂ε, λε) ≤ C

[
d+ tn
n

∨ Q(ρ)√
n

∨
Λε(H \H′)

Q(1)√
n

∨ U(L)Ω(ρ/
√
d) + tn

n

]
, (3.5.10)

where tn := t+ 4 log log2 n+ 2 log 2.

Proof. Let λε be the solution of (3.3.1) and λ̂ε be the solution of (3.3.2). Denote

Λε(A) :=

∫
A

λε(h)µ(dh), Λ̂ε(A) :=

∫
A

λ̂ε(h)µ(dh).

Also denote

F (λ) := P (` • fλ) + εH(λ), λ ∈ D

and

Fn(λ) := Pn(` • fλ) + εH(λ), λ ∈ D.

It follows from (3.4.13), (3.4.14) and Proposition 3.4.8 that, for all τ ∈ (0, 1), the

directional derivative of F exists at the point λε + τ(λ̂ε− λε) in the direction λ̂ε− λε
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and

DF (λε + τ(λ̂ε − λε); λ̂ε − λε) = (3.5.11)

P (`′ • fλε+τ(λ̂ε−λε))(fλ̂ε − fλε) + ε

∫
H

(λ̂ε − λε) log(λε + τ(λ̂ε − λε))dµ.

Moreover, since the function [0, 1] 3 τ 7→ F (λε + τ(λ̂ε − λε)) is convex, its right

derivative, which coincides with DF (λε + τ(λ̂ε − λε); λ̂ε − λε), is nondecreasing in

τ ∈ [0, 1]. Since λε is the minimum point of F, this implies that, for τ ∈ (0, 1),

DF (λε + τ(λ̂ε − λε); λ̂ε − λε) = P (`′ • fλε+τ(λ̂ε−λε))(fλ̂ε − fλε)+

+ ε

∫
H

(λ̂ε − λε) log(λε + τ(λ̂ε − λε))dµ ≥ 0. (3.5.12)

A similar argument shows that for all τ ∈ (0, 1)

DFn(λ̂ε + τ(λε − λ̂ε); λ̂ε − λε) = (3.5.13)

Pn(`′ • fλ̂ε+τ(λε−λ̂ε))(fλ̂ε − fλε) + ε

∫
H

(λ̂ε − λε) log(λ̂ε + τ(λε − λ̂ε))dµ ≤ 0.

Subtracting (3.5.12) from (3.5.13) and rearranging the terms, we get

P
(
`′ • fλ̂ε+τ(λε−λ̂ε) − `

′ • fλε+τ(λ̂ε−λε)

)
(fλ̂ε − fλε)+ (3.5.14)

+ ε

∫ (
λ̂ε − λε

)
log

(1− τ)λ̂ε + τλε

(1− τ)λε + τ λ̂ε
dµ ≤

≤
∣∣∣(P − Pn)(`′ • fλ̂ε+τ(λε−λ̂ε))(fλ̂ε − fλε)

∣∣∣ .
Under the assumptions on the loss, in particular, continuity of `′, passing to the limit

as τ → 0, using the dominated convergence and Proposition 3.4.9, we get

P (`′ • fλ̂ε−`
′ • fλε)(fλ̂ε − fλε)+ (3.5.15)

+ εK(λ̂ε, λε) ≤
∣∣∣(P − Pn)(`′ • fλ̂ε)(fλ̂ε − fλε)

∣∣∣.
Since ` is a loss of quadratic type,

P
(
`′ • fλ̂ε − `

′ • fλε
)

(fλ̂ε − fλε) ≥ c‖fλ̂ε − fλε‖
2
L2(Π)
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Our next step is to extract some information about the sparsity of λ̂ε from these

bounds. To this end, we use Lemma 3.4.10 which implies that for all H′ ⊂ H

εΛ̂ε(H \H′) ≤ 2εΛε(H \H′) + εK(λ̂ε, λε) (3.5.16)

and

εΛε(H \H′) ≤ 2εΛ̂ε(H \H′) + εK(λ̂ε, λε). (3.5.17)

To complete the proof of the theorem, it remains to bound∣∣(P − Pn)(`′ • fλ̂ε)(fλ̂ε − fλε)
∣∣ .

Let

Λ(δ,∆) :=

λ ∈ D : ‖fλ − fλε‖L2(Π) ≤ δ,

∫
H\H′

λ(h)dµ ≤ ∆


and

αn(δ,∆) := sup {|(P − Pn)(`′ • fλ)(fλ − fλε)|, λ ∈ Λ(δ,∆)} .

We need the following two lemmas.

Lemma 3.5.3. Let H be a class of functions on S uniformly bounded by 1 and let

L ⊂ L2(Π) be a finite dimensional subspace with d := dim(L). Denote

ρ := ρ(H;L) := sup
h∈H
‖PL⊥h‖L2(Π).

Suppose that assumption (3.4.5) holds. Then with some constant C > 0

E sup
h∈H
|Rn(PL⊥h)| ≤ C

[
ρ

√
Ω(ρ/

√
d)

n

∨ U(L)Ω(ρ/
√
d)

n

∨√
1

n
wn(ρ/

√
d)

]
.

Proof. First we will show that condition (3.4.4) implies the bound for the metric

entropy H(H, L2(Π), δ). Indeed, since
√
nGn(h)

L−→ WΠ, where WΠ is the isonormal

Gaussian process, we have that

lim inf
n→∞

P

(
sup

‖h1−h2‖L2(Π)≤u
|Gn(h1 − h2)| > ε

)
≥

P

(
sup

‖h1−h2‖L2(Π)≤u
|W(h1)−W(h2)| > ε

)
,
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which in turn implies by Fatou lemma and the formula E|X| =
∞∫
0

P (|X| ≥ t)dt that

w(u) ≥ E sup
‖h1−h2‖2≤u

|W(h1)−W(h2)|.

It remains to recall that by Sudakov minorization (this bound is nontrivial, see [16],

Lemma 1 for the proof)

H1/2(H, L2(Π), δ) ≤ K

1∫
δ

1

u2
E sup
‖h1−h2‖2≤u

|W(h1)−W(h2)|du

≤ K

1∫
δ

1

u2
w(u)du := Ω1/2(δ). (3.5.18)

Let H̄ ⊂ H be a minimal δ-net forH in L2(Π) (i.e., the set of centers of the L2(Π)-balls

of radius δ that form a minimal covering of H). Clearly,

log card(H̄) ≤ Ω(δ).

Also, we have

E sup
h∈H
|Rn(PL⊥h)| ≤

≤ E sup
h∈H̄
|Rn(PL⊥h)|+ E sup

h1,h2∈H,‖h1−h2‖L2(Π)≤δ
|Rn(PL⊥(h1 − h2))|. (3.5.19)

To bound the first term in the right hand side, we use an elementary inequality for

a Rademacher process indexed by a finite class of functions (see, e.g., [51], proof of

Lemma 2):

E sup
h∈H̄
|Rn(PL⊥h)| ≤ C

[
ρ

√
Ω(δ)

n

∨ U(L)Ω(δ)

n

]
, (3.5.20)

where we also used the facts that

max
h∈H̄
‖PL⊥h‖L2(Π) ≤ ρ

and

max
h∈H̄
‖PL⊥h‖L∞ ≤ U(L).
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To bound the second term, we will first use Gaussian multipliers inequality (see [62],

Lemma 4.5) to get

E sup
h1,h2∈H,‖h1−h2‖L2(Π)≤δ

|Rn(PL⊥(h1 − h2))| ≤
√
π

2
E sup
f∈H(δ)

|Gn(PL⊥f)|,

where

H(δ) :=

{
h1 − h2 : h1, h2 ∈ H, ‖h1 − h2‖L2(Π) ≤ δ

}
.

Note thatGn(f), f ∈ H(δ) is a centered Gaussian process conditionally onX1, . . . , Xn.

Denote Ê the conditional expectation given X1, . . . , Xn. Then, for all f1, f2 ∈ H(δ),

Ê(
√
nGn(PL⊥f1−PL⊥f2))2 = Πn(PL⊥f1−PL⊥f2)2 ≤ 2Πn(f1−f2)2+2Πn(PL(f1−f2))2.

By the definition of UL, we have

|PL(f1 − f2)(x)| ≤ UL(x)‖f1 − f2‖L2(Π),

and we are getting the following bound:

Ê(
√
nGn(PL⊥f1 − PL⊥f2))2 ≤ 2Πn(f1 − f2)2 + 2Πn(U2

L)‖f1 − f2‖2
L2(Π).

Recall thatWΠ(f), f ∈ L2(Π) denotes the isonormal Gaussian process (i.e., it is a cen-

tered Gaussian process with covariance ÊWΠ(f1)WΠ(f2) = 〈f1, f2〉L2(Π)) independent

of X1, . . . , Xn and g1, . . . , gn,. Then

Ê(Gn(PL⊥f1)−Gn(PL⊥f2))2 ≤ 2Ê(Gn(f1)−Gn(f2))2+

+
2

n
Πn(U2

L)Ê(WΠ(f1)−WΠ(f2))2 =: E(Y (f1)− Y (f2))2,

where

Y (f) :=
√

2Gn(f) +

√
2

n
‖UL‖L2(Πn)WΠ(f).

By Slepian lemma (see [62], Theorem 3.15), we conclude that

Ê sup
f∈H(δ)

|Gn(PL⊥f)| ≤ 2Ê sup
f∈H(δ)

|Y (f)|,
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which also implies that

E sup
h∈H(δ)

|Rn(PL⊥h)| ≤

4
√
πE sup

h∈H(δ)

|Gn(h)|+ 4

√
π

n
E‖UL‖L2(Πn)Ê sup

h∈H(δ)

|WΠ(h)|. (3.5.21)

To bound the right hand side, observe that, by Dudley’s entropy bound and (3.5.18),

Ê sup
h∈H(δ)

|WΠ(h)| ≤ C

∫ δ

0

√
logN(H(δ), L2(Π), u)du ≤

C

∫ δ

0

√
2 logN(H, L2(Π), u/2)du ≤ CδH1/2(δ) ≤ CδΩ1/2(δ)

with some numerical constant C > 0. We also have

E‖UL‖2
L2(Πn) = EU2

L(X) = d.

Finally, our assumptions on the continuity modulus imply that

E sup
h∈H(δ)

|Gn(h)| ≤ 1√
n
wn(δ).

Combining this with (3.5.19) and (3.5.20) yields

E sup
h∈H
|Rn(PL⊥h)| ≤ C

[
ρ

√
Ω(δ)

n

∨
δ
√
d

√
Ω(δ)

n

∨ U(L)Ω(δ)

n

∨√
1

n
wn(δ)

]
and it is enough to take δ := ρ/

√
d to complete the proof.

Lemma 3.5.4. Under assumptions of Theorem 3.5.2, there exists a constant C > 0

depending only on the loss such that with probability ≥ 1 − e−t for all 1√
n
≤ δ ≤

1, 1√
n
≤ ∆ ≤ 1

α(δ,∆) ≤ C

δ√d+ tn
n

∨
ρ

√
Ω(ρ/

√
d)

n

∨√
1

n
wn(ρ/

√
d)
∨

∨
Λε(H \H′)

√
1

n
wn

(
1√
d

)∨
Λε(H \H′)

√
Ω(1/

√
d)

n

∨
∆

√
1

n
wn

(
1√
d

)
∨

∆

√
Ω(1/

√
d)

n

∨ U(L)Ω(ρ/
√
d) + tn

n

 =: β̂n(δ,∆).

where tn := t+ 4 log log2 n+ 2 log 2.
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Proof. Recall that

Λ(δ,∆) :=

λ ∈ Λ : ‖fλ − fλε‖L2(Π) ≤ δ,

∫
H\H′

λ(h)dµ ≤ ∆


and

αn(δ,∆) := sup {|(P − Pn)(`′ • fλ)(fλ − fλε)|, λ ∈ Λ(δ,∆)} .

The function u 7→ `′(y, fλε + u)u, |u| ≤ 2 is Lipschitz with Lipschitz constant de-

pending only on ` and M . Note that

`′(y, fλ(·))(fλ(·)− fλε(·)) = `′(y, fλε + u)u|u=fλ(·)−fλε (·)

This allows us to apply the symmetrization and contraction inequalities which result

in the following bound:

Eαn(δ,∆) ≤ CE sup
λ∈Λ(δ,∆)

|Rn(fλ − fλε)|,

where C > 0 is a constant depending only on `. Let PL denote the orthogonal projec-

tion on a d-dimensional subspace L. The following representation is straightforward:

fλ − fλε = PL (fλ − fλε) +

∫
H′

PL⊥(h) (λ(h)− λε(h)) dµ(h)+

+

∫
H\H′

PL⊥(h) (λ(h)− λε(h)) dµ(h).

Hence, it is enough to bound separately the expected supremum of the Rademacher

process Rn for each term in the sum. For the first term, the standard bound on

Rademacher processes indexed by a finite dimensional subspace (see, e.g., [48], exam-

ple 1) yields

E sup
λ∈Λ(δ,∆)

{|Rn (PL(fλ − fλε)) |} ≤ δ

√
d

n
. (3.5.22)
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To bound the remaining terms, we will use Lemma 3.5.3. First, note that

E sup
λ∈Λ(δ,∆)

∣∣∣∣∣∣∣Rn

 ∫
H\H′

(λ− λε)(h)PL⊥h dµ(h)


∣∣∣∣∣∣∣ (3.5.23)

= E sup
λ∈Λ(δ,∆)

∣∣∣∣∣∣∣
∫
H\H′

(λ− λε)(h)Rn(PL⊥h) dµ(h)

∣∣∣∣∣∣∣
≤ sup

λ∈Λ(δ,∆)

(
Λ(H \H′) + Λε(H \H′)

)
E sup
h∈H\H′

|Rn(PL⊥h)| ≤(
∆ + Λε(H \H′)

)
E sup
h∈H\H′

|Rn(PL⊥h)|.

We now use the bound of Lemma 3.5.3 with H \ H′ instead of H and with ρ = 1 to

get

E sup
λ∈Λ(δ,∆)

∣∣∣∣∣∣∣Rn

 ∫
H\H′

(λ− λε)(h)PL⊥h dµ(h)


∣∣∣∣∣∣∣ ≤ (3.5.24)

C
(

∆ + Λε(H \H′)
)[√Ω(1/

√
d)

n

∨ U(L)Ω(1/
√
d)

n

∨√
1

n
wn(1/

√
d)

]
.

Similarly,

E sup
λ∈Λ(δ,∆)

∣∣∣∣∣∣Rn

∫
H′

(λ− λε)PL⊥hdµ(h)

∣∣∣∣∣∣ ≤ 2E sup
h∈H′
|Rn(PL⊥h)|

and using the bound of Lemma 3.5.3 with H′ instead of H and with ρ := ρ(H′, L),

we get

E sup
λ∈Λ(δ,∆)

∣∣∣∣∣∣Rn

∫
H′

(λ− λε)(h)PL⊥hdµ(h)

∣∣∣∣∣∣ ≤
C

[
ρ

√
Ω(ρ/

√
d)

n

∨ U(L)Ω(ρ/
√
d)

n

∨√
1

n
wn(ρ/

√
d)

]
. (3.5.25)
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Combining (3.5.22)–(3.5.25) results in the following bound:

Eα(δ,∆) ≤ C

δ√d

n

∨
ρ

√
Ω(ρ/

√
d)

n

∨√
1

n
wn(ρ/

√
d)
∨

(3.5.26)

∨
Λε(H \H′)

√
1

n
wn

(
1√
d

)∨
Λε(H \H′)

√
Ω(1/

√
d)

n

∨
∆

√
1

n
wn

(
1√
d

)
∨

∆

√
Ω(ρ/

√
d)

n

∨ U(L)Ω(1/
√
d)

n

 .
Talagrand’s concentration inequality implies that with probability at least 1−e−s

and with a proper choice of numerical constant C > 0

αn(δ,∆) ≤ β(δ,∆, s) := 2

(
Eαn(δ,∆) + Cδ

√
s

n
+ C

s

n

)
(3.5.27)

We have to make the bound uniform with respect to

1√
n
≤ δ ≤ 1,

1√
n
≤ ∆ ≤ 1

To this end, let

δj = ∆j =
1

2j
,

ti,j = t+ 2 log(i+ 1) + 2 log(j + 1) + 2 log 2, i, j ≥ 0.

Then, with probability at least

1−
∑

i,j:δi,∆j≥n−1/2

exp{−ti,j} = 1− e−t−log 4(
∑
j≥0

(j + 1)−2)2 ≥ 1− e−t,

for all i, j such that δi,∆j ≥ n−1/2 and all δ,∆ such that δ ∈ (δi+1, δi], ∆ ∈ (∆j+1,∆j],

the following bounds hold:

α(δ,∆) ≤ β(δi,∆j, ti,j).

Note that

ti,j ≤ t+ 2 log 2 + 2 log log2

(
1

δ

)
+ 2 log log2

(
1

∆

)
,

2 log log2

(
1
∆

)
n

≤ 2
log log2(n)

n
,

2 log log2

(
1
δ

)
n

≤ 2
log log2(n)

n
,
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implying that

ti,j ≤ tn.

Thus, with probability at least 1− e−t, for all δ,∆ ∈ [n−1/2, 1]

α(δ,∆) ≤ β̂(δ,∆) := C

δ√d+ tn
n

∨
ρ

√
Ω(ρ/

√
d)

n

∨√
log n

n
wn(ρ/

√
d)
∨

∨
Λε(H \H′)

√
1

n
wn

(
1√
d

)∨
Λε(H \H′)

√
Ω(1/

√
d)

n

∨
∆

√
1

n
wn

(
1√
d

)
∨

∆

√
Ω(1/

√
d)

n

∨ U(L)Ω(ρ/
√
d) + tn

n

 .

To complete the proof of the theorem, denote

δ̂ := ‖fλ̂ε − fλε‖L2(Π),

and

∆̂ := Λ̂ε(H \H′).

By lemma 3.5.4, the following inequalities hold with probability at least 1−e−t(uniformly

for n−1/2 ≤ δ̂ ≤ 1, n−1/2 ≤ ∆̂ ≤ 1):

cδ̂2 ≤ β̂n(δ̂, ∆̂), (3.5.28)

ε∆̂ ≤ 2εΛε(H \H′) +
2

log(2)
β̂n(δ̂, ∆̂) (3.5.29)

It remains to solve (3.5.28), (3.5.29) to get the bounds for δ̂, ∆̂. The cases when

δ̂ < n−1/2 and/or ∆̂ < n−1/2 are simple: because αn(δ,∆) is non-decreasing in both

variables, it is enough to substitute n−1/2 instead of δ or ∆ into the expression of it’s

upper bound β̂(δ,∆) to get required inequalities. We proceed with the main case.

If ∆̂ ≤ Λε(H \ H′), then (3.5.29) and the first bound of the theorem are trivially
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satisfied. Moreover, (3.5.28) yields

δ̂2 ≤C

δ̂√d+ tn
n

∨
ρ

√
Ω(ρ/

√
d)

n

∨
Λε(H \H′)

√
Ω(1/

√
d)

n

∨
(3.5.30)

∨√
1

n

(
wn(ρ/

√
d)
∨

Λε(H \H′)wn(1/
√
d)
)∨ U(L)H(ρ/

√
d) + tn

n

]
and the third bound of the theorem follows immediately. On the other hand, if

∆̂ > Λε(H \H′), then (3.5.28) implies that with some constant C > 0

δ̂2 ≤ C

[
δ̂

√
d+ tn
n

∨
ρ

√
Ω(ρ/

√
d)

n

∨√
1

n

(
wn(ρ/

√
d)
∨

∆̂wn(1/
√
d)
)

∨
∆̂

√
Ω(1/

√
d)

n

∨ U(L)H(ρ/
√
d) + tn

n

]
. (3.5.31)

Solutions δ̂ of this inequality satisfy the bound

δ̂2 ≤C
[
d+ tn
n

∨
ρ

√
Ω(ρ/

√
d)

n

∨√
1

n

(
wn(ρ/

√
d)
∨

∆̂wn(1/
√
d)
)∨

(3.5.32)

∨
∆̂

√
Ω(1/

√
d)

n

∨ U(L)Ω(ρ/
√
d) + tn

n

]
.

Substituting the resulting upper bound on δ̂ into inequality (3.5.29), with some ele-

mentary algebra, yields

ε∆̂ ≤ 2εΛε(H \H′) + C

[
d+ tn
n

∨
ρ

√
Ω(ρ/

√
d)

n

∨
(3.5.33)√

1

n

(
wn(ρ/

√
d)
∨

∆̂wn(1/
√
d)
)∨

∆̂

√
Ω(1/

√
d)

n

∨ U(L)Ω(ρ/
√
d) + tn

n

]
.

If the condition on ε holds with constant D > 2C, this implies

∆̂ ≤ 2Λε(H \H′) + C

[
d+ tn
nε

∨ ρ

ε

√
Ω(ρ/

√
d)

n

∨
√

1

n

wn(ρ/
√
d)

ε

∨ U(L)Ω(ρ/
√
d) + tn

nε

]
. (3.5.34)

By (3.5.15) and Lemma 3.5.4, with probability at least 1− e−t,

εK(λ̂ε, λε) ≤
2

log 2
αn(δ̂, ∆̂) ≤ 2

log 2
β̂n(δ̂, ∆̂),
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it is enough now to substitute the bounds on δ̂, ∆̂ into the expression for β̂n(δ̂, ∆̂) to

see that with some constant C > 0

εK(λ̂ε, λε) ≤ C

[
d+ tn
n

∨
ρ

√
Ω(ρ/

√
d)

n

∨
√

1

n

(
wn(ρ/

√
d)
∨

Λε(H \H′)wn(1/
√
d)
)∨

Λε(H \H′)

√
Ω(1/

√
d)

n

∨ U(L)Ω(ρ/
√
d) + tn

n

]
.

This and the bound of Lemma 3.4.10

Λε(H \H′) ≤ 2Λ̂ε(H \H′) +K(λ̂ε, λε)

imply also the second bound of the theorem, which completes the proof.

To derive an upper bound on the random error |E(fλ̂ε)− E(fλε)| from the bound

on the L2(Π)-norm ‖fλ̂ε − fλε‖L2(Π), it is enough to use Proposition 3.4.1 of Section

2.3. For arbitrary H′ ⊂ H and L ⊂ L2(Π) with d := dim(L) and ρ := ρ(H′, L),

denote

Γn(H′;L; t) :=

[
d+ tn
n

∨
ρ

√
Ω(ρ/

√
d)

n

∨
Λε(H \H′)

√
Ω(1/

√
d)

n

∨
∨ wn(ρ/

√
d)√

n

∨
Λε(H \H′)

wn(1/
√
d)√

n

∨ U(L)Ω(ρ/
√
d) + tn

n

]
. (3.5.35)

Corollary 3.5.5. With probability at least 1− e−t,

|E(fλ̂ε)− E(fλε)| ≤ C

[
Γn(H′;L; t)

∨√
E(fλε)Γn(H′;L; t)

]
.

3.5.3 Oracle inequality for prediction problems

For clarity, we will assume that (3.4.5) is satisfied so that bounds of Proposition 3.4.2

hold for a suitable function T (u). Combined, results of the previous two sections

imply the following:
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Corollary 3.5.6. There exist constants C, D̄ > 0 depending only on ` such that for

all measurable subsets H′ ⊂ H, for all finite dimensional subspaces L ⊂ L2(Π) with

d := dim(L) and

ρ := ρ(H′;L),

for all

ε ≥ D̄

√
T (1/

√
d) log d

n

and for all t > 0, the following bounds hold with probability at least 1− e−t :

E(fλ̂ε) ≤ inf
λ∈D

2E(fλ) + ε2γ2(log λ) + C

d+ tn
n

∨
ρ

√
T (ρ/

√
d)

n
log(
√
d/ρ)

∨
∨ ∫
H\H′

λdµ

√
T (1/

√
d)

n
log d

∨ U(L)T (ρ/
√
d)

n


 ,

where tn = t+ 4 log log2 n+ 2 log 2.

In particular, if H is a VC-subgraph class of VC-dimension V (for the definitions

and examples, see [91], Section 2.6), then one can take T (u) = (2V + 1) log A
u

. In this

case, previous inequality can further be simplified to

E(fλ̂ε) ≤ inf
λ∈D

(
2E(fλ) + ε2γ2(log λ) + C

[
d+ tn
n

∨ ρ√
n

log3/2

√
d

ρ

∨
∨ ∫
H\H′

λdµ
log3/2 d√

n

∨ U(L) log
(√

d/ρ
)

n


 .

Constant 2 in front of E(fλ) can be replaced by 1 + δ at the price of replacing C by

C
δ

.

3.6 Density estimation

This section is devoted to other applications of techniques developed earlier in the

chapter. We have seen that many prediction problems can be embedded and analyzed

in the context of dictionary learning. In turns out that the problem of L2 - density
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estimation also naturally fits this framework (see [18], [51] for a similar approach).

At the same time, we were able to relax the assumption on the uniform boundedness

of the dictionary with the help of Proposition 3.4.4.

Suppose that X1, . . . , Xn ∈ S are iid observations from some distribution P that is

absolutely continuous with respect to a given σ-finite measure ν such that dP
dν

= f∗.

Assume that ‖f∗‖∞ = M < ∞. As before, we want to estimate the unknown f∗

(which in general might not belong to co(H)) by a mixture of the elements of a

dictionary H, which in this case consists of probability densities with respect to ν.

We will assume that

1. sup
h∈H
‖h‖L2(ν) <∞;

2. the envelope F (x) = FH(x) := sup
h∈H

h(x) is such that ‖F‖ψ2 := Ψ <∞.

In what follows, we will write ‖ · ‖2 for ‖ · ‖L2(ν), and

〈h1, h2〉 := 〈h1, h2〉L2(ν) =

∫
S

h1(x)h2(x)dν(x).

Let D be convex weakly compact subset D of L1(µ), consisting of probability density

functions with respect to µ. Consider the following minimization problem with L2 -

loss:

λε = argminλ∈D

[
‖fλ − f∗‖2

2 + ε pen(λ)

]
. (3.6.1)

Since 〈fλ, f∗〉 = Pfλ, (3.6.1) is equivalent to

λε = argminλ∈D

[
‖fλ‖2

2 − 2Pfλ + ε pen(λ)

]
. (3.6.2)

The empirical version of (3.6.2) is

λ̂ε = argminλ∈D

[
‖fλ‖2

2 − 2Pnfλ + ε pen(λ)

]
. (3.6.3)

If we take pen(λ) =
∫
H
λ log λdµ to be the (negative) entropy penalty, then analogues

of the previous results of this chapter hold. Note that the excess risk is simply given
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by E(fλ) = ‖fλ − f∗‖2
L2(ν).

Remark: although we can not apply Theorems 3.5.2 and 3.5.1 directly, the analysis

for the present problem follows the same path as before, even with several simplifica-

tions. We will outline some details below.

The uniform boundedness assumption on the dictionary seems to be too restrictive

for the density estimation problem. Another idea that motivates subsequent results

is based on an interesting observation made by V. Koltchinskii (see Corollaries 9.7,

9.8 in [53]): in the case of sparse regression problem with squared loss in a dictionary

of cardinality N , the (non-penalized!) least-squares estimator over the unit simplex

in RN possesses sparsity properties. This phenomenon appears as a result of analysis

of `1-penalized empirical risk minimization over an abstract closed convex set and

the fact that the `1-norm is constant on the unit simplex. Similar conclusions can be

made based on results in [18], although it is not mentioned explicitly in the paper.

Motivated by this observation, we analyze problems (3.6.2) and (3.6.3) for

pen(λ) = ‖λ‖1 :=

∫
H

|λ(h)|dµ

which is identically equal to 1 whenever λ is a probability density function (with

respect to µ). We stress the fact that the penalty is introduced artificially as a

method of theoretical analysis that allows us to obtain interesting results. Denote

F (λ) := ‖fλ‖2
2 − 2Pfλ + ε‖λ‖1, λ ∈ D,

Fn(λ) := ‖fλ‖2
2 − 2Pnfλ + ε‖λ‖1, λ ∈ D.

As before, it is easy to see that both F and Fn are continuous in L1(µ) and (not

necessarily strictly) convex. Indeed, by Hölder and integral Minkowski (see [85],
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Lemma A.1) inequalities

|F (λn)− F (λ0)| =

∣∣∣∣∣∣
∫
S

(fλn − fλ0)(fλn + fλ0) dν − 2P (fλn − fλ0)

∣∣∣∣∣∣ ≤
≤ ‖fλn + fλ0‖L2(ν) ‖fλn − fλ0‖L2(ν) + 2‖λn − λ0‖1EFH(X) ≤

≤ 2 sup
h∈H
‖h‖2

L2(ν)‖λn − λ0‖1 + 2‖λn − λ0‖1EFH(X)→ 0

given that ‖λn − λ0‖L1(µ) → 0. Here, FH(x) := sup
h∈H

h(x) is the envelope of class H.

Now an argument of Theorem 3.4.7 implies that both problems (3.6.2) and (3.6.3)

have (not necessarily unique) solutions in every convex weakly compact subset D of

L1(µ), consisting of probability density functions with respect to µ. Once again, note

that for our choice pen(λ) = ‖λ‖1, solution of (3.6.3) coincides with a solution of

the non-penalized L2(ν)-norm minimization problem, since the penalty term is just

a constant on D.

For λ ∈ D, let

∂‖λ‖1 = {w : H 7→ [−1, 1], w(t) = sign λ(t) for t ∈ supp(λ)} (3.6.4)

be the subdifferential of ‖ · ‖1 at point λ (we also assume that w is measurable).

Remark: equality in (3.6.4) follows from the general description of the subdiffer-

ential of a norm ‖ · ‖ in a Banach space X:

∂‖x‖ =


{x∗ ∈ X∗ : ‖x∗‖ = 1, x∗(x) = ‖x‖} , x 6= 0,

{x∗ ∈ X∗ : ‖x∗‖ ≤ 1} , x = 0,

where X∗ is the dual space. For details on our specific example, see [45], paragraph

4.5.1.

Next, we define a version of the alignment coefficient γ(w) with respect to the

L2(ν)-norm by

γ(w) := sup
{
〈w, u〉L2(µ) : ‖fu‖L2(ν) = 1, 〈u, 1〉L2(µ) = 0

}
.
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We will be interested in those “oracles” λ ∈ D for which there exist w ∈ ∂‖λ‖1 with

γ(w) <∞.

Given w : H 7→ [−1, 1], let

H(w) =

{
h ∈ H : |w(h)| ≥ 1

2

}
.

If w ∈ ∂‖λ‖1, H(w) can be seen as the “smoothed” support of λ.

Next, note that directional derivative of the functional Fn at the point λ1 in direction

u := λ2 − λ1 is

DFn(λ1;u) := lim
t↓0

Fn(λ1 + tu)− Fn(λ1)

t
= 2 〈fλ1 , fλ2 − fλ1〉L2(ν) − 2Pn(fλ2 − fλ1),

where we used the fact that both λ1, λ2 are densities with respect to µ, hence

‖λ1 + tu‖1 = ‖λ1‖1 = 1 ∀t ∈ [0, 1].

Let λ̂ be a solution to (3.6.3) (note that it is independent of ε when pen(λ) = ‖λ‖1).

When λ1 = λ̂, the corresponding directional derivatives are nonnegative for any

λ2 ∈ D. With these preliminary observations and previously developed techniques,

we can prove the main result of this Section – an oracle inequality for performance

of λ̂.

First, recall some definitions: let L be a finite dimensional subspace of L2(ν), d =

dim(L) and

UL(x) := sup
g∈L,‖g‖L2(P )≤1

|g(x)|.

Given H′ ⊆ H, let

ρ(H′;L) := sup
h∈H′
‖PL⊥h‖L2(P ) ≤

√
M sup

h∈H′
‖PL⊥h‖L2(ν).
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Moreover, denote

D := sup
h∈H
‖h‖L2(P );

U(L,H) := Ψ + ‖UL‖ψ2 ;

Ωn(ρ) := Ω

(
ρ

√
1

d

)
∨ log n;

tn := t+ c log log n.

For brevity, we will denote

Q(s) := s

√
Ω(s/

√
d)
∨

wn(s/
√
d), s ∈ (0,D].

For definitions of Ω(·), wn(·), see (3.4.4).

Theorem 3.6.1. Let λ̄ ∈ D and w̄ ∈ ∂‖λ̄‖1. There exist numerical constants C and

D̄ large enough such that for any

ε ≥ D̄ · Q(D)√
n

and any subspace L with d = dim(L) and ρ = ρ(H(w̄);L)

‖fλ̂ − fλ∗‖
2
2 +

ε

4

∫
H\H(w̄)

λ̂dµ ≤ ‖fλ̄ − f∗‖2
2 +

1

2
ε2γ2(w̄)+

C

[
dM + tn

n

∨ Q(ρ)√
n

∨
U(L,H)

Ωn(ρ) + tn log n

n

]
,

with probability ≥ 1− e−t.

Remarks:

1. Note that the oracle inequality above is exact, meaning that it has factor 1 in

front of ‖fλ̄− f∗‖2
2. We were not able to get constant 1 for prediction problems

considered above.

2. Although D (or its nonrandom upper bound) are generally unknown, its value

is not needed to obtain λ̂ since λ̂ does not depend on a particular choice of ε.
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Proof. As we have already mentioned above, the necessary conditions for the minima

in problem (3.6.3) can be written as follows: for any λ̄ ∈ D

2
〈
fλ̂ε , fλ̂ε − fλ̄

〉
− 2Pn(fλ̂ε − fλ̄) ≤ 0. (3.6.5)

Next, let w̄ ∈ ∂‖λ̄‖1 and ŵ ∈ ∂‖λ̂‖1. Adding 2
〈
f∗, fλ̄ − fλ̂ε

〉
+ ε

〈
ŵ − w̄, λ̂− λ̄

〉
to

both sides of the inequality and noting that
〈
f∗, fλ̄ − fλ̂ε

〉
= P (fλ̄ − fλ̂ε), we get

2
〈
fλ̂ε − f∗, fλ̂ε − fλ̄

〉
+ε

∫
H

(ŵ − w̄)(h)(λ̂− λ̄)(h)dµ(h) ≤ (3.6.6)

≤ 2(P − Pn)(fλ̄ − fλ̂ε) + ε

∫
H

(ŵ − w̄)(h)(λ̂− λ̄)(h)dµ(h).

It is easy to see that∫
H

(ŵ − w̄)(h)(λ̂− λ̄)(h)dµ(h) ≥ 1

2

∫
H\H(w̄)

λ̂(h)dµ(h) (3.6.7)

for any choice of ŵ and w̄. At the same time, ŵ(h) ≡ 1 ∈ ∂‖λ̂‖1 by definition. For

this choice of ŵ, we clearly have that for any w̄ ∈ ∂‖λ̄‖1∫
H

(ŵ + w̄)λ̂dµ ≤
∫
H

(ŵ + w̄)λ̄dµ,

which is equivalent to
∫
H
ŵ(λ̂− λ̄)dµ ≤

∫
H
w̄(λ̄− λ̂)dµ, implying

∫
H

(ŵ − w̄)(λ̂− λ̄)dµ ≤ 2

∫
H

w̄(λ̄− λ̂)dµ. (3.6.8)

Moreover,

2
〈
fλ̂ε − f∗, fλ̂ε − fλ̄

〉
= ‖fλ̂ε − f∗‖

2
2 + ‖fλ̂ε − fλ̄‖

2
2 − ‖fλ̄ − f∗‖2

2. (3.6.9)

Together with (3.6.6), formulas (3.6.7),(3.6.8),(3.6.9) give

‖fλ̂ − fλ∗‖
2
2 + ‖fλ̂ − fλ̄‖

2
2 +

ε

2

∫
H\H(w̄)

λ̂(h)dµ(h) ≤ (3.6.10)

≤ ‖fλ̄ − f∗‖2
2 + 2(P − Pn)(fλ̄ − fλ̂ε) + 2ε

∫
H

w̄(h)(λ̄− λ̂)(h)dµ(h).
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First, note that

2ε

∫
H

w̄(h)(λ̄− λ̂)(h)dµ(h) ≤ 2ε‖fλ̂ − fλ̄‖2 sup
‖u‖L2(ν)≤1

〈w̄, u〉 =

= 2εγ(w̄)‖fλ̂ − fλ̄‖2 ≤
1

2
‖fλ̂ − fλ̄‖

2
2 + 2ε2γ2(w̄). (3.6.11)

To this end, we need to control the empirical process (P −Pn)(fλ̄− fλ̂ε). We have all

the necessary tools to obtain the required bound. As before, define

Λ(δ,∆) :=

λ ∈ D : ‖fλ − fλ̄‖L2(ν) ≤ δ,

∫
H\H(w̄)

λ(h)dµ(h) ≤ ∆


and

αn(δ,∆) := sup {|(P − Pn)(fλ − fλ̄)|, λ ∈ Λ(δ,∆)} .

Note that, since f∗ ≤M , ‖fλ − fλ̄‖L2(ν) ≤ δ implies ‖fλ − fλ̄‖L2(P ) ≤M1/2δ.

By symmetrization inequality (Theorem 1.2.6)

Eαn(δ,∆) ≤ CE sup
λ∈Λ(δ,∆)

|Rn(fλ − fλ̄)|.

Let L be a d-dimensional subspace of L2(ν); we will use the following representation

and separately bound each term in the sum below:

fλ − fλε = PL (fλ − fλε) +

∫
H(w̄)

PL⊥(h) (λ(h)− λε(h)) dµ(h)+

+

∫
H\H(w̄)

PL⊥(h) (λ(h)− λε(h)) dµ(h). (3.6.12)

We will follow the steps of Lemma 3.5.4, emphasizing the necessary modifications.

First, note that

E sup
λ∈Λ(δ,∆)

{|Rn (PL(fλ − fλ̄)) |} ≤ δ

√
dM

n
. (3.6.13)

The remaining bounds are based on the following modification of Lemma 3.5.3:
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Lemma 3.6.2. Let H be a class of functions on S with an envelope F such that

‖F‖ψ2 := Ψ <∞ and let L ⊂ L2(ν) be a finite dimensional subspace with d := dim(L)

and UL(x) := sup
h∈L,‖h‖L2(P )≤1

|h(x)|. Denote

D := sup
h∈H
‖h‖L2(P );

ρ := ρ(H;L) := sup
h∈H
‖PL⊥h‖L2(P );

U(L,H) := Ψ + ‖UL‖ψ2 ;

Ωn(ρ) := Ω

(
ρ

√
1

d

)
∨ log n.

Suppose that assumption (3.4.5) holds. Then with some constant C > 0

E sup
h∈H
|Rn(PL⊥h)| ≤ C

[
ρ

√
Ω(ρ/

√
d)

n

∨
U(L,H)

Ωn(ρ)

n

∨√
1

n
wn

(
ρ

√
1

d

)]
.

Proof. The proof is identical to the argument behind Lemma 3.5.3, the only difference

being the bound on the Rademacher process indexed by finitely many functions. In

this case, we use the estimate provided by Corollary 3.4.5, part (b). More precisely,

using the notations of Lemma 3.5.3, we get from Corollary 3.4.5

E sup
h∈H̄
|Rn(PL⊥h)| ≤ C

[
ρ

√
Ω(δ)

n

∨√
Ψ + ‖UL‖ψ2

n
(Ω(δ) ∨ log n)

]
. (3.6.14)

The rest of the proof goes without changes, so that we get the desired bound by

setting δ := ρ
√

1
d
.

We will apply Lemma 3.6.2 to bound the second and third terms in (3.6.12) in

the same way as Lemma 3.5.3 was applied to prove Lemma 3.5.4. Resulting bound
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takes the following form:

Eα(δ,∆) ≤ C

δ√dM

n

∨
ρ

√
Ω(ρ/

√
d)

n

∨√
1

n
wn

(
ρ

√
1

d

)∨
(3.6.15)

∨
∆

D
√

Ω(D/
√
d)

n

∨√
1

n
wn

(
D
√

1

d

)∨
∨

U(L,H)
Ωn(ρ)

n

]
.

The final step consists in applying Adamczak’s version of Talagrand’s concentration

inequality (see Theorem 1.2.5) and making the bound uniform with respect to δ,∆

in a way similar to Lemma 3.5.4. For fixed δ,∆ we have

α(δ,∆) ≤ K

[
Eα(δ,∆) + δ

√
tM

n
+ CΨ

t log n

n

]
, (3.6.16)

where we used the fact that the envelope for the class {fλ − fλ̄, λ ∈ Λ(δ,∆)} satisfies

sup
λ∈Λ(δ,∆)

|(fλ − fλ̄)(X)| ≤ ‖λ− λ̄‖1F (X) ≤ 2F (X),

and
∥∥ max

1≤i≤n
F (Xi)

∥∥
ψ1
≤ C log nΨ by the properties of Orlicz norms. The uniform

version of (3.6.16) looks as follows: for all n−1/2 ≤ δ ≤
√

2D and n−1/2 ≤ ∆ ≤ 1

simultaneously

α(δ,∆) ≤ β(δ,∆) := C̄

δ√dM + tn
n

∨
ρ

√
Ω(ρ/

√
d)

n

∨√
1

n
wn

(
ρ

√
1

d

)∨
∨

∆

D
√

Ω(D
√
M/
√
d)

n

∨√
1

n
wn

(
D
√

1

d

)∨ (3.6.17)

∨
U(L,H)

Ωn(ρ) + tn log n

n

]
,

with probability ≥ 1− e−t; here, tn := t+ c log log n.

Finally, set δ̂ := ‖fλ̂ − fλ̄‖L2(ν) and ∆̂ :=
∫

H\H(w̄)

λ̂dµ. As before, the cases when

δ̂ < n−1/2 or ∆̂ < n−1/2 have to be handled separately by replacing δ̂ or ∆̂ with
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its upper bound. To complete the proof in the main case n−1/2 ≤ δ̂ ≤
√

2D and

n−1/2 ≤ ∆̂ ≤ 1, consider the inequality (obtained from (3.6.10), (3.6.11) and (3.6.17)):

‖fλ̂ − fλ∗‖
2
2 +

1

2
δ̂2 +

ε

2
∆̂ ≤ (3.6.18)

≤ ‖fλ̄ − f∗‖2
2 +

1

2
ε2γ2(w̄) + 2β(δ̂, ∆̂).

Assume that D̄ from the assumptions of the Theorem satisfies

D̄ ≥ 4̄C

where C̄ is the constant from (3.6.17). Using the inequality

Cδ̂

√
dM + tn

n
≤ 1

2
δ̂2 + C1

dM + tn
n

,

we deduce from (3.6.18) that

‖fλ̂ − fλ∗‖
2
2 +

ε

4
∆̂ ≤ ‖fλ̄ − f∗‖2

2 +
1

2
ε2γ2(w̄)+ (3.6.19)

C

[
dM + tn

n

∨
U(L,H)

Ωn(ρ) + tn log n

n

∨
∨

ρ

√
Ω(ρ/

√
d)

n

∨√
1

n
wn

(
ρ

√
1

d

) ,
concluding the proof.

Assume that complexity assumption (3.4.5) is satisfied so that bounds of Proposition

3.4.4 hold for a suitable function T (u). In this case, our previous result implies the

following:

Corollary 3.6.3. Let λ̄ ∈ D and w̄ ∈ ∂‖λ̄‖1. There exist numerical constants C and

D̄ large enough such that for any

ε ≥ D̄

D
√
T (2/

√
d)

n



111



and any subspace L with d = dim(L) and ρ = ρ(H(w̄);L) the following holds with

probability ≥ 1− e−t:

‖fλ̂ − fλ∗‖
2
2 +

ε

4

∫
H\H(w̄)

λ̂dµ ≤ ‖fλ̄ − f∗‖2
2 +

1

2
ε2γ2(w̄)+

C

dM + tn
n

∨
ρ

√
T (ρ/Ψ

√
d)

n
log

Ψ
√
d

ρ

∨
∨

U(L,H)
Tn + tn log n

n

]
,

where

Tn := T

(
ρ

Ψ
√
d

)
log2

(
Ψ
√
d

ρ

)∨
Ψ2T

(
1√
n

)∨
T

(√
T (1/

√
n) log n

Ψn

)∨
log n

and tn = t+ c log log n.

In particular, if T (u) = V log A
u

, then Tn ≤ log3
(

Ψ
√
d

ρ

)∨
Ψ2 log(Ψn). In many

typical situations, ρ & 1
n
. In this case, previous inequality can be further simplified

to

‖fλ̂ − fλ∗‖
2
2 +

ε

4

∫
H\H(w̄)

λ̂dµ ≤ ‖fλ̄ − f∗‖2
2 +

1

2
ε2γ2(w̄)+

C

[
dM + tn

n

∨ ρ√
n

log3/2 Ψ
√
d

ρ

∨
U(L,H)

Ψ2 log3 Ψ
√
d

ρ
+ tn log n

n

]
.

The bound of Corollary 3.6.3 has a clear intuitive meaning: if there exists λ̄ such that

‖fλ̄− f∗‖2
2 is small, ‖ · ‖1 has a “smooth” subgradient at the point λ̄, and at the same

time its support can be well approximated by a linear subspace of small dimension

d, then ‖fλ̂ − fλ∗‖2
2 is also small, and most of the “weight” of λ̂ is distributed over

supp(λ̄). For examples and more details, see Subsection 3.7.4 below.

3.7 Examples

Below we consider few common examples of the base classes and show how to obtain

upper bounds for the alignment coefficient.
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3.7.1 Weakly correlated partitions

Let Hj, j = 1, . . . , N be a measurable partition of H. We are interested in the

situation when the number N of function classes Hj is large and they are ”weakly

correlated“. As a concrete examples of such a partition, one can consider the case

when S = [0, 1]N and, for each j = 1, . . . , N, Hj is a class of functions depending

on the j-th variable. For the problem of density estimation, a natural example is

a situation when hi ∈ Hi and hj ∈ Hj, i 6= j implies supp(hi) ∩ supp(hj) = ∅

(or, more generally, when the measure of intersection is “small”). This might be

viewed as an extension to the case of infinite dictionaries of usual notions of ”almost

orthogonality“ (such as, for instance, restricted isometry property mentioned in the

introduction) frequently used in the literature on sparse recovery. It is also close to

”sparse additive models“ and ”sparse multiple kernel learning“, [70], [58]. Suppose

there exist oracles λ ∈ D such that fλ provides a good approximation of the target

f∗ and, at the same time, λ is ”sparse“ in the sense that it is concentrated mostly on

a small number of sets Hj. For technical purposes, we will provide slightly different

constructions for prediction problems and for density estimation.

3.7.1.1 The case of prediction problems

For each set Hj, let Kj : L2(Hj;µ) 7→ L2(Hj, µ) be the integral operator (self-adjoint

and nonnegatively definite) defined by

(Kju)(h) :=

∫
Hj

covΠ(h, g)u(g)µ(dg), h ∈ Hj,

where covΠ(h, g) := Π(hg)− Π(h)Π(g). We will also denote

σΠ(g) :=
√

covΠ(g, g) and ρΠ(h, g) :=
covΠ(h, g)

σΠ(h)σΠ(g)
.

Let Lj be the subspace of L2(Π) spanned by Hj and, for J ⊂ {1, . . . , N}, let

β2(J) := inf

{
β > 0 : ∀fj ∈ Lj, j = 1, . . . , N

∑
j∈J

σ2
Π(fj) ≤ β2σ2

Π

( N∑
j=1

fj

)}
.
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Note that if the spaces Lj, j = 1, . . . , N are uncorrelated, i.e., covΠ(h, g) = 0, h ∈

Li, g ∈ Lj, i 6= j, then β2(J) = 1. More generally, given hj ∈ Lj, j = 1, . . . , N, denote

by κ({hj : j ∈ J}) the minimal eigenvalue of the covariance matrix (covΠ(hi, hj))i,j∈J .

Let

κ(J) := inf
{
κ({hj : j ∈ J}) : hj ∈ Lj, σΠ(hj) = 1

}
.

Denote LJ = l.s.

(⋃
j∈J
Lj

)
and let ρ(J) := sup

{
ρΠ(f, g) : f ∈ LJ , g ∈ LJc

}
. The

quantity ρ(J) should be compared with the notion of canonical correlation often used

in the multivariate statistical analysis. It is easy to check (see [53], Proposition 7.1)

that

β2(J) ≤ 1√
κ(J)(1− ρ2(J))

.

The next proposition easily follows from the definitions of γ(w), β2(J) and the oper-

ators Kj:

Proposition 3.7.1. For all J ⊂ {1, . . . , N} and all w =
∑
j∈J

wj with wj ∈ Im(K
1/2
j ),

γ(w) ≤ β2(J)

(∑
j∈J

γ̄2(wj)

)1/2

≤ β2(J)

(∑
j∈J

‖K−1/2
j wj‖2

L2(Hj ,µ)

)1/2

. (3.7.1)

Proof. Let uj be such that u =
∑
j

uj with supp(uj) ⊂ Hj. Then

γ̄(w) ≤ sup
u:σ2

Π(fu)=1

∑
j

〈wj, u〉 ≤ sup

{∑
j∈J

〈wj, uj〉 :
∑
j∈J

σ2
Π(fuj) ≤ β2

2(J)

}
≤

≤ sup

{∑
j∈J

σΠ(fuj)γ̄(wj) :
∑
j∈J

σ2
Π(fuj) ≤ β2

2(J)

}
≤

≤ β2(J)

(∑
j∈J

γ̄2(wj)

)1/2

.

It is often convenient to assume that an “oracle density” is bounded below by a

constant δ. If λ :=
∑
j∈J

λj + δ, where δ ∈ (0, 1), λj are nonnegative functions defined
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on Hj and
d∑
j=1

∫
Hj
λj(h)dh = 1− δ,

then log λ =
∑
j∈J

wjIHj + log δ, where wj := log(λj + δ) − log δ. Therefore, (3.7.1)

implies

γ̄(log λ) ≤ β2(J)

(∑
j∈J

‖K−1/2
j wj‖2

L2(Hj ,µ)

)1/2

.

3.7.1.2 The case of density estimation

The notion of “almost orthogonality” for density functions h1, h2 can be interpreted

in the following sense: there exist measurable disjoint sets H1 ⊂ supp(h1), H2 ⊂

supp(h2) such that

∣∣∣∣∣∫Hi hidν − 1

∣∣∣∣∣ is small for i = 1, 2. This should be compared to

the notion of mutual singularity of measures. Consequently, the definition of weakly

correlated partitions is slightly different from the construction above, so we will outline

the main differences. For each Hj, define the Gram operator Kj : L2(Hj, µ) 7→

L2(Hj, µ) by

(Kju)(h) :=

∫
Hj
〈h, g〉L2(ν) u(g)µ(dg), h ∈ Hj,

where we use notations of Section 3.6. We also define

ρν(h, g) :=
〈h, g〉L2(ν)

‖f‖L2(ν)‖g‖L2(ν)

.

Let Lj be the subspace of L2(ν) spanned by Hj, and, for J ⊂ {1, . . . , N}, denote

LJ = l.s.

(⋃
j∈J
Lj

)
and

β2(J) := inf

{
β > 0 : ∀fj ∈ Lj, j = 1, . . . , N

∑
j∈J

‖fj‖2
L2(ν) ≤ β2

∥∥∥∥∥
N∑
j=1

fj

∥∥∥∥∥
2

L2(ν)

}
.

(3.7.2)

Given hj ∈ Lj, j = 1, . . . , N, denote by κ({hj : j ∈ J}) the minimal eigenvalue of

the Gram matrix
(
〈hi, hj〉L2(ν)

)
i,j∈J

, and let

κ(J) := inf
{
κ ({hj : j ∈ J}) : hj ∈ Lj, ‖hj‖L2(ν) = 1

}
.
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If moreover

ρ(J) := sup
{
ρν(f, g) : f ∈ LJ , g ∈ LJc

}
,

then

β2(J) ≤ 1√
κ(J)(1− ρ2(J))

.

The following analogue of Proposition 3.7.1 is straightforward:

Proposition 3.7.2. For all J ⊂ {1, . . . , N} and all w =
∑
j∈J

wj with γ(wj) < ∞ for

every j ∈ J ,

γ(w) ≤ β2(J)

(∑
j∈J

γ2(wj)

)1/2

≤ β2(J)

(∑
j∈J

‖K−1/2
j wj‖2

L2(Hj ,µ)

)1/2

(3.7.3)

3.7.2 Monotone functions dictionary and decision stumps

3.7.2.1 Monotone functions dictionary

Assuming that S = [0, 1], let H := {I[0,s] : s ∈ [0, 1]} and let µ be the Lebesgue

measure in [0, 1]. The mixtures of functions from H are decreasing absolutely con-

tinuous functions f : [0, 1] 7→ [0, 1] such that f(0) = 1 and f(1) = 0. Suppose

that Π is the Lebesgue measure in [0, 1]. The Gram operator K is given by the

kernel K(s, t) = 〈I[0,s], I[0,t]〉L2(Π) = min(s, t). Clearly, K is a compact self-adjoint

operator. It is well known that its eigenvalues are
(

1
π(k+1/2)

)2

and the correspond-

ing eigenfunctions are φk(t) =
√

2 sin((k + 1/2)πt), k = 0, 1, 2, . . . . For a function

w ∈W2,1[0, 1], w(0) = 0, w =
∞∑
k=0

wkφk, we have

(
K−1/2w

)
(t) =

∞∑
k=0

π(k + 1/2)wkφk(t) = w′(t).

Hence

γ(w) ≤ ‖K−1/2w‖L2[0,1] = π

( ∞∑
k=0

(k + 1/2)2w2
k

)1/2

≤ A‖w‖W2,1[0,1].
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3.7.2.2 Decision stumps and applications

Next, we will outline another approach that allows to obtain bounds for alignment co-

efficient in many cases, including the example above. This approach is based on direct

correspondence between the kernels of gaussian processes with covariance operator K

and the spaces of functions with finite alignment coefficient.

A well-known technique to obtain representations for the kernels of a gaussian

process is related to the so-called Factorization theorem (see [65]). We just mention

its important corollary. Assume that we are given a dictionary {ht} indexed by

t ∈ [0, 1], where ht : S 7→ R, S is a compact subset of Rk, dΠ(x) = p(x)dx is such that

0 < c1 ≤ p(x) ≤ c2 <∞ for all x ∈ S. Finally, assume that K(s, t) := 〈fs, ft〉L2(Π) is

the covariance function of a gaussian process with continuos sample paths. Then

γ(w) <∞ ⇐⇒ ∃v ∈ L2(S, dx) : w(t) =

∫ 1

0

ht(s)v(s)dΠ(s). (3.7.4)

Moreover, in this case γ(w) = ‖v‖L2[0,1].

We will use this technique to obtain the bound for alignment coefficient when

{
ht(x) = I[0,t](x)− I(t,1](x), t ∈ [0, 1]

}
,

where x ∈ [0, 1] := S and µ is the Lebesgue measure on [0, 1]. This is a variant

of so-called “decision stumps” used in binary classification. Applying (3.7.4) to the

centered family
{
gt(x) = ht(x)−

∫ 1

0
ht(s)p(s)ds, t ∈ [0, 1]

}
, we get

γ̄(w) <∞ ⇐⇒ w(t) =

∫ t

0

v(s)p(s)ds−
∫ 1

t

v(s)p(s)ds,

or w′(t) = 2v(t)p(t), where v is chosen such that
∫ 1

0
v(s)p(s)ds = 0 (this can always

be done for the centered family). In particular, w(0) = w(1) = 0. Since we assumed

that p is bounded away from 0 and ∞,

γ̄2(w) =

∫ 1

0

v2(s)
p2(s)

p2(s)
ds ≤ c

∫ 1

0

(w′(s))
2
ds ≤ c‖w‖2

W2,1[0,1].
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Now we will apply this bound in the context of weakly correlated partitions.

Due to their simplicity, decision stumps constitute a rather poor family of ”thresh-

old classifiers”, usually too small to contain a good prediction rule. However, their

high-dimensional analogue is a popular choice for boosting - type algorithms, such as

AdaBoost [34]. These algorithms combine weak learners (e.g., decision stumps) with

properly chosen weights, and the resulting prediction rule often has very strong gener-

alization properties. Our approach can be seen as a version of ”regularized boosting”,

previously considered in [13].

Suppose that X = (X1, . . . , XN) ∈ S := [0, 1]N and let Hj :=
{
h

(j)
t

}
, with

h
(j)
t (x) = I[0,t](xj)− I(t,1](xj), x = (x1, . . . , xN).

Assume that coordinate projections of X are independent, so that our “weak cor-

relation” assumption holds, in particular, β2(J) = 1 for any J ⊂ {1, . . . , N}. It is

well known that the Vapnik-Chervonenkis dimension of decision stumps dictionary

H :=
N⋃
j=1

Hj is bounded by V := 2(log2N + 1). An implication of this fact is that

complexity assumption (3.4.5) holds with T (u) = (2V + 1) log 1
u

[91]. Moreover, as-

sume that λ is a d-sparse oracle, meaning that λ =
d∑
j=1

λj with supp(λj) ⊆ Hij ,

1 ≤ i1 < . . . < id ≤ N . Set J := {i1, . . . , id}.

Let Lj be the subspace spanned by
{
h

(j)
i
M

, i = 1, . . . ,M − 1
}

, and define

L := l.s.

(
d⋃
j=1

Lij

)

of dimension dim(L) = d(M − 1). Clearly, ‖h(j)
t − h

(j)
s ‖2

L2(Π) ≤ c|t− s|, which implies

ρ (supp(λ), L) ≤ c
1√
M
.

At the same time, note that, since L consists of piecewise-constant functions,

inf
f∈L,‖f‖∞=1

‖f‖2
L2(Π) ≥

C(Π)

M
,
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implying U(L) ≤ C(Π)
√
M .

Let 0 < δ < 1
N

and define

λδ := δ +
∑
j∈J

cδλj,

so that log λδ = log δ +
∑
j∈J

log
(

1 +
cδλj
δ

)
IHj , where cδ = 1−Nδ is chosen such that∫

H
λδdµ = 1. Note that

∫
H\

⋃
j∈J
Hj
λδ dµ = (N − d)δ and

γ̄2(log λδ) ≤
∑
j∈J

‖wj,δ‖2
W2,1[0,1] ≤ d max

1≤j≤d
‖wj,δ‖2

W2,1[0,1],

where wj,δ = log
(

1 +
cδλj
δ

)
. Finally, set ε := D log d

√
logN
n

. It remains to apply the

general inequality (3.5.6) to λδ and optimize over M . In particular, choosing

M∗ = C log(nd) (logN)1/3 n
1/3

d2/3
,

we get

Corollary 3.7.3. With probability ≥ 1− e−t,

E(fλ̂ε) ≤ inf
δ>0

[
2E(fλδ) + C

(
(d logN)1/3

n2/3
log(nd) +

d log2 d logN

n
max
1≤j≤d

‖wj,δ‖2
W2,1+

+δ(N − d)

√
logN

n
+
t

n

)]
,

whenever logN < d2/3n1/6
√

lognd
.

If N � en, this inequality becomes meaningful when the oracle λ is such that

max
1≤j≤d

‖wj,δ‖2
W2,1 . logτ

(
1
δ

)
for some τ > 0. If this is the case, one can choose

δn,N � 1
(n∨N)2 , which yields |E(fλ)− E(fλ1/N2 )| ≤ C(N ∨ n)−1 by Proposition 3.4.1,

and the inequality can be further simplified to

E(fλ̂ε) ≤ 2E(fλ) + C

[
(d logN)1/3

n2/3
log(nd) +

d log2 d logN

n
logτ (N ∨ n) +

t

n

]
.
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3.7.3 Fourier dictionary

Suppose that S := Rd and let H = {cos〈t, ·〉, t ∈ T} , where T ⊂ Rd is a bounded

open set symmetric about the origin, i.e., T = −T . It can be assumed now that

the measure µ and the densities λ are defined on the set T. Suppose that measures

µ, Π are absolutely continuous with respect to the Lebesgue measure with densities

m and p, respectively. It will be assumed that m(t) = m(−t), t ∈ T. We will also

assume that for λ ∈ D, λ(t) = λ(−t), t ∈ T. When it is needed, it will be assumed

that functions λ,m are defined on the whole space Rd and are equal to 0 on Rd \ T.

Clearly, the function fλ is then the Fourier transform of λm :

fλ(·) =

∫
Rd

ei〈t,·〉λ(t)m(t)dt := λ̂m(·).

Therefore, assuming that the density p is positive, we get, for all w ∈ C∞(Rd),

〈w, λ〉L2(µ) = 〈w, λm〉L2(Rd) = 〈ŵ, λ̂m〉L2(Rd) = 〈ŵ, fλ〉L2(Rd) =

〈
ŵ

p1/2
, fλp

1/2

〉
L2(Rd)

,

which easily implies that γ(w) ≤
∥∥∥ ŵ√

p

∥∥∥
L2(Rd)

. Under an additional assumption that,

for some L > 0, α > 0, p(x) ≥ L(1 + |x|2)−α, x ∈ Rd, we get the following bound:

γ(w) ≤ A1‖(I + ∆)α/2w‖L2(Rd) ≤ A‖w‖W2,α(Rd), where ∆ stands for the Laplace

operator.

3.7.4 Location families and generalizations

3.7.4.1 Location families on a torus

Suppose that S := Td is the d-dimensional torus and let H =
{
h(· − θ), θ ∈ Td

}
for

some bounded function h : Td → R and let µ be the Haar measure on Td. Assume that

Π is a probability measure on Td with density p (with respect to the Haar measure)

that is bounded away from 0 by a constant L > 0. Then, a simple Fourier analysis

argument shows that

γ(w) ≤ A

(∑
n∈Zd

∣∣∣∣ŵnĥn
∣∣∣∣2)1/2

,
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where ŵn, ĥn denote the Fourier coefficients of functions w, h. Under the assumption

that |ĥn| ≥ L(1 + |n|2)−α/2, it easily follows that

γ(w) ≤ A‖w‖W2,α(Td).

3.7.4.2 Dictionaries with stationary covariance functions

We will describe another similar example. Assume that H = {ht, t ∈ R} and µ is the

Lebesgue measure. Moreover, assume that

(a) Eht(X)hs(X) = K(t− s) in the case of prediction problems, or

(b) 〈ht, hs〉L2(ν) = K(t− s) in the case of L2(ν)-density estimation,

and that K is continuous. By Bochner’s theorem,

K(z) =

∫
R

eizxdγ(x)

for some Borel measure γ. This gives ‖fu‖2
L2(Π) =

∫
R |û(x)|2dγ(x) for prediction

problems or, similarly, ‖fu‖2
L2(ν) =

∫
R |û(x)|2dγ(x) in the case of density estimation.

If, moreover, dγ(x) = v(x)dx and v(x) is positive on supp(ŵ), then

〈w, u〉L2(dx) = 〈ŵ, û〉L2(dx) =

〈
ŵ√
v
, û
√
v

〉
L2(dx)

≤ ‖fu‖L2(dx)

∥∥∥∥ ŵ√v
∥∥∥∥
L2(dx)

,

implying γ(w) ≤
∥∥∥ ŵ√

v

∥∥∥
L2(dx)

. If v(x) ≥ L(1 + |x|2)−α, we get γ(w) ≤ A‖w‖W2,α(dx).

When h(·) is a density with respect to Lebesgue measure and K(·) is generated by

location family {h(· − t), t ∈ T ⊂ R}, one can take v(x) = c|ĥ(x)|2.

The following example is related to the density estimation problem. Let f∗ be the

unknown density of X with bounded support and such that ‖f∗‖∞ < ∞. Assume

that H =
N⋃
j=1

Hj, where

Hj = {hj(· − θ), θ ∈ [0, 1]}

and hj is a probability density function on a bounded interval Tj ⊂ R with respect

to ν(dx) = dx, and µ is the Lebesgue measure. We will also assume for simplicity
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that supports of hi(· − θ) and hj(· − θ) are disjoint for any i 6= j and θ ∈ [0, 1] (in

other words, dist(Ti, Tj) > 1). In this case, β2(J) = 1 for any J ⊂ {1, . . . , N} (here

we use the version of β2(J) adapted to density estimation, see (3.7.2)). The sparsity

assumption can be understood in the following sense: suppose that there exists a good

approximation of the unknown density f∗ by the convex mixture of the elements of

Hij , j = 1 . . . d for an integer d � N . In other words, there exists an good oracle

λ =
d∑
j=1

λj with supp(λj) ⊂ Hij . It is well-known [74] that for each Hj complexity

assumption (3.4.5) is satisfied with Tj(u) = Vj log R
u

, hence it is also satisfied for H

with

T (u) = logN ∨max
j
Tj(u).

Additionally, we will make the following smoothness assumption on hj:

hj ∈ Σ(β,B, Tj)

for some β > 0, where Σ(β,B, Tj) is the Hölder smoothness class, see Definition 2.1

in Chapter 2. Let t
(1)
j , . . . , t

(R)
j be the uniform grid on Tj of mesh size τR =

cj
R

, and

define Lj as a linear subspace spanned by a basis of piecewise-polynomial functions

of degree at most bβc + 1 (see (2.3.1)), with dim(L) ≤ R(bβc + 1). Alternatively,

one can take the space spanned by B-splines with knots t
(0)
j , . . . , t

(R)
j of dimension

dim(Lj) = R. We set

L := l.s.

(
d⋃
j=1

Lij

)
of dimension dim(L) ≤ C(β) · dR. By approximation properties of such spaces (see

Section 2.5 for piecewise-polynomials and [29], Chapter 13 for B-splines),

ρ (supp(λ), L) ≤ C2

√
‖f∗‖∞

1

Rβ
.

To get an upper bound on U(L), we use the fact that both piecewise-polynomial

spaces and B-splines satisfy

‖φi‖∞ ≤ C(β)
√
R,
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where {φi} is the L2(dx)-orthonormal basis of Lj. Together with an observation that

at most bβc+1 of basis functions are nonzero at any given x ∈ Tj, we get from Hölder

inequality

sup
g∈L,‖g‖L2(dx)=1

|g(x)| = sup∑
α2
j≤1

∣∣∣∑αjφj(x)
∣∣∣ ≤ C(β)

√
R.

Consequently, if rf∗ := inf
x∈supp(f∗)

f∗(x) > 0 (recall that by our assumptions f∗ has

bounded support), we have

U(L) = sup
g∈L,‖g‖L2(Π)=1

|g(x)| ≤ 1
√
rf∗

sup
g∈L,‖g‖L2(dx)=1

|g(x)| ≤ C(β)
√
rf∗

√
R.

Remark: quantity

(
inf

x∈supp(f∗)
f∗(x)

)−1/2

can be replaced by any upper bound on

sup
f∈L,‖f‖L2(Π)=1

‖f‖L2(dx) which in general might depend on R.

Let ε := D
√

logN∨log(nd)
n

. It remains to substitute obtained expressions into the

general inequality (3.6.3) and optimize over R. In particular, choosing

R∗ = C

(
logN ∨ log

nd

‖f∗‖∞

) 3β
2β+1 (n‖f∗‖∞)1/2(1+β)

d1/(1+β)
,

we get an inequality with the leading error term of order d
β
β+1

n
1+2β
2+2β

:

Corollary 3.7.4. With probability ≥ 1− e−t, for any d-sparse λ

‖fλ̂ − f∗‖
2
2 +

ε

4

∫
H\H(w)

λ̂(x)dx ≤ ‖fλ − f∗‖2
2 + C


(
dβ‖f∗‖1/2

∞

)1/(β+1)

n
1+2β
2+2β

(
logN ∨ log

dn

‖f∗‖∞

) 3β
2β+1

+
d (logN ∨ log nd)

n
max
1≤j≤d

∥∥∥∥∥ ŵj|ĥj|
∥∥∥∥∥

2

L2(dx)

+ Θ
(t+ log log n) log n

n
4β+3
4β+4

 ,
where wj ∈ ∂‖λj‖1 are suitable smooth elements of subdifferentials such that w =∑
j∈J

wj ∈ ∂‖λ‖1, and

Θ =

√
R∗
rf∗

=

√√√√√(logN ∨ log nd
‖f∗‖∞

) 3β
2β+1 ‖f∗‖1/2(1+β)

∞
d1/(1+β)

rf∗
.

depends on n and N only logarithmically.
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The following modification of the previous example is also of some interest. As-

sume that

H = {h(· − θ), θ ∈ [−T, T ]}

is the location family generated by a single density function h ∈ Σ(β,B,R). As

before, µ is the Lebesgue measure on [−T, T ], ν is the Lebesgue measure on R, and the

unknown density f∗ has bounded support and satisfies 0 < rf∗ ≤ f∗(x) ≤ Rf∗ < ∞.

In this case, sparsity is naturally understood in the following sense: assume that there

exists an oracle λ such that E(fλ) = ‖fλ − f∗‖2
2 is small, and moreover

λ =
d∑
j=1

λj,

where “spikes” λj have disjoint connected supports, and ν (supp(λ)) ≤ Cd� T . For

such “d-sparse” oracles λ, the alignment coefficient of the subgradient w ∈ ∂‖λ‖1

is often controlled by σ = min
i 6=j

[dist(supp(λi), supp(λj))]. In particular, if γ(w) ≤

C‖w‖W2,1(R), the latter norm does not exceed C
√

d
σ

for a properly chosen w.

The subspaces Lj are constructed as before, with interpolation knots spread uniformly

over supp(λj). The analogue of Corollary 3.7.4 is the following statement:

Corollary 3.7.5. With probability ≥ 1− e−t, for any d-sparse λ and w ∈ ∂‖λ‖1

‖fλ̂ − f∗‖
2
2 +

ε

4

∫
H\H(w)

λ̂(x)dx ≤ ‖fλ − f∗‖2
2 + C

[(
dβRf∗

)1/(β+1)

n
1+2β
2+2β

(log dn)
3β

2β+1

+
d log(nd)

n

∥∥∥∥∥ ŵ|ĥ|
∥∥∥∥∥

2

L2(dx)

+ Θ
(t+ log log n) log n

n
4β+3
4β+4

 ,
where

Θ =

√√√√√(log nd
Rf∗

) 3β
2β+1 R

1/2(1+β)
f∗
d1/(1+β)

rf∗
.

depends on n only logarithmically.
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3.8 Concluding remarks

Let us mention that techniques used to obtain oracle inequalities for the solutions of

entropy penalized problems can be applied to obtain similar bounds for other types

of penalization, such as L1-norm penalty. A particular example of this type of results

was presented in the previous section on density estimation.

One of our recent joint projects with V. Koltchinskii makes an attempt to obtain re-

sults for other types of prediction problems, in particular, for the functional regression

model with subgaussian design. We proceed with a brief description of this model.

Let T be an index set equipped with the σ-algebra and a measure µ. Consider the

following functional linear model:

Y =

∫
T

X(t)λ∗(t)dµ+ ξ, (3.8.1)

where X := {X(ω, t), t ∈ T} is a subgaussian random process indexed by T, λ∗ ∈

L1(µ) and ξ is a zero-mean random variable with σ2
ξ := Eξ2 < ∞ and independent

of X. The goal is to estimate unknown λ∗ based on a given sample from P . Clearly,

(3.8.1) can be viewed as a special case of dictionary learning, with the dictionary

consisting of point evaluation functionals H = {δt(·), t ∈ T}. Let D be a convex

weakly compact subset of L1(µ) and consider the following penalized risk minimiza-

tion problem:

λ̂ε := argminλ∈D

[
Pn(y − fλ(x))2 + ε‖λ‖1

]
, (3.8.2)

Assume T ⊂ R2 and X(t) represents an image. Often, the “relevant information”

about this image will be concentrated on a small subset of T. In this case, a reason-

able approach is to characterize properties of λ̂ε when λ∗ is sparse, in a sense that

{X(t) : t ∈ supp(λ∗)} can be well approximated by a linear subspace of small dimen-

sion. If this is the case, the performance of λ̂ should be controlled by dimension of this

subspace and other parameters describing the quality of approximation. In addition,
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λ̂ε should inherit the sparsity pattern of λ∗. This work is currently in progress, and

we postpone the details now. Another interesting question is to consider sparse pre-

diction problems (for example, usual regression) in the dictionaries that do not admit

uniform upper bounds in sup-norm. This requires further extensions of techniques

applied for density estimation with L2 loss in Section 3.6.
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Inégalités D’Oracle. PhD thesis, 2009.

[68] Low, M. G., “On nonparametric confidence intervals,” Ann. Statist., vol. 25,
no. 6, pp. 2547–2554, 1997.

[69] Mammen, E. and Tsybakov, A., “Smooth discrimination analysis,” The An-
nals of Statistics, vol. 27, no. 6, pp. 1808–1829, 1999.

[70] Meier, L., Van De Geer, S., and Bühlmann, P., “High-dimensional addi-
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