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Abstract

We study the prediction problem in the context of the high-dimensional linear regression
model. We focus on the practically relevant framework where a fraction of the linear
measurements is corrupted while the columns of the design matrix can be moderately
correlated. Our findings suggest that for most sparse signals, the Lasso estimator
admits strong performance guarantees under more easily verifiable and less stringent
assumptions on the design matrix compared to much of the existing literature.
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1. Introduction

Assume that we are given n linear measurements Y := (Y1, Y2, . . . , Yn) of the
p-dimensional vector β∗, namely, Y = Xβ∗ +

√
nθ∗ + ξ, where X ∈ Rn×p a fixed

“design matrix” such that its rows represent the measurement vectors, ξ is the noise
vector with independent sub-Gaussian 1 coordinates with variance σ2, and θ∗ ∈ Rn

is the vector of “outliers” that represent additive corruption. We are interested in the
situation when (a) β∗ is sparse, meaning that the cardinality s of its support S := {j ∈
{1, . . . , p} : β∗,j ̸= 0} is much smaller than p, (b) the vector θ∗ of outliers is also
sparse, meaning that the cardinality o of its support O ⊆ {1, . . . , n} is much smaller
than n, and (c) the matrix X is allowed to have moderately correlated columns.

Without loss of generality, we will assume that the columns of the design matrix are
centered and have length

√
n. Let us note that the form of the corruption term

√
nθ is

chosen to be consistent with this requirement: indeed, letting In be the n× n identity

matrix, we can equivalently express our model as Y = [X |
√
nIn]

(
β∗

T θ∗
T
)T

+ ξ.

Here, [X |
√
nIn] is the augmented design matrix with unit columns and

(
β∗

T θ∗
T
)T

is the sparse vector of dimension p + n. The celebrated Lasso estimator [11] is the

1We say that a random variable Z has sub-Gaussian distribution if EetZ ≤ eCvar(Z)t2 for all t ∈ R and
some absolute constant C > 0.
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solution of the convex optimization problem 2

β̂L ∈ argmin
β,θ

1

2n
∥Y −Xβ −

√
nθ∥22 + λ (∥β∥1 + ∥θ∥1) . (1)

Note that, unlike the classical sparse linear regression problem, we are only interested
in estimating the vector β∗ and the associated prediction risk R(β̂L) :=

1
n∥X(β̂∗ −

βL)∥22, while treating θ∗ as a nuisance parameter. The idea of relying on Lasso to
construct robust regression estimators is not new and goes back at least to the works
by Wright et al. [13], Nguyen and Tran [10]. A useful interpretation of Lasso in this
context was given by Gannaz [5]: specifically, problem (1) is equivalent to the following
one:

β̂L ∈ arg min
β∈Rp

{
λ2

n∑
i=1

Φ

(
yi −Xiβ

λ
√
n

)
+ λ∥β∥1

}
, (2)

where Φ(u) = 0.5u2 ∧ (|u| − 1/2) is Huber’s loss function. The latter definition gives
an intuitively plausible explanation of robustness inherent to β̂L. Classical bounds for
the Lasso [1] imply that the dependence of R(β̂L) on the number of outliers o is not
worse than O

(
o log(n)

n

)
. This bound was improved by Dalalyan and Thompson [4]

to O

((
o log(n)

n

)2)
. This aligns with the minimax rate derived by Gao [6], up to the

log2(n) factor. Recently, it was shown by Minsker et al. [9] that the dependence on

the contamination proportion can be further improved to
(

o log(n/o)
n

)2
if the Lasso is

replaced by the square-root Slope estimator. The approach taken in the previous papers
yields guarantees that are uniform with respect to the underlying signal and outlier
vectors β∗ and θ∗, but the price one has to pay are the strict conditions on the design
matrix X . For instance, to satisfy theses requirements, the prior works have assumed
that X has sub-Gaussian rows with covariance structure that satisfies a version of the
restricted eigenvalue condition [1]. It is well known that conditions of this type are
notoriously hard to verify. Moreover, such assumptions often do not represent the design
matrices encountered in applications. An alternative framework for the classical Lasso
estimator was proposed and analyzed in [3]: assuming that the matrix X satisfies only a
mild and easily verifiable “coherence property,” the authors showed that R(β̂L) admits
optimal bounds for most (but not all) sparse vectors β∗, where “most” is understood
with respect to the uniform distribution over all choices of supports of given cardinality
and all sign patterns of β∗. In other words, Lasso works well for most “typical,” or
“average” vectors β∗, a notion alluded to in the title of the paper. We find this framework
particularly appealing for statistical and machine learning applications where the design
matrix X is predetermined and often has correlated columns. Further theoretical and
empirical evidence for good predictive performance of Lasso in the presence of strong
correlations among the features was given by [7, 2]. This motivates our main goal:

2For simplicity, we assume that the coefficients of β and θ are penalized at the same level λ, although it is
possible to introduce two regularization parameters λs and λo; all our arguments are valid in this case as well,
and result in better log-factors.
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to understand the instances when robust Lasso (1) is expected to perform well under
weak, verifiable assumptions on the design matrix. To achieve this goal, we extend the
framework proposed by [3] to the contamination framework discussed above.

1.1. Notation
Given a matrix X ∈ Rn×p, ∥X∥ will stand for its spectral norm, ∥X∥∞,2 denotes

the maximum ℓ2 norm of a row and ∥X∥max – the largest in absolute value entry of X .
We denote by Xj and Xi the j-th column and the i-th row of X respectively, while
XS , XO refer to the submatrices obtained by selecting the columns/rows of X indexed
by S ⊆ [p] := {1, 2, . . . , p}, O ⊆ [n] respectively. Given a vector v ∈ Rp, ∥v∥ stands
for its ℓ2 norm and ∥v∥∞ - for its sup-norm. Finally, given a, b ∈ R, a ∧ b stands for
min(a, b) and a ∨ b for max(a, b).

2. Main results

In this section, we state and discuss our main results. We start with the key definitions
and assumptions.

Definition 2.1. Given a matrix X with centered columns, define the coherence of X as
is maximum correlation between the columns of X:

µ(X) = max
1≤i<j≤p

|⟨Xi,Xj⟩|
∥Xi∥∥Xj∥

.

A matrix X is said to obey the coherence property C(A0) if µ(X) ≤ A0 · (log(p))−1

for some positive constant A0.

Note that the property C(A0) can be easily verified numerically for a given matrix X .

Definition 2.2. A coefficient vector β follows a generic s-sparse model if

• it support S = supp(β) is selected uniformly at random from [p];

• conditionally on S, the signs of individual entries of β are independent and
uniformly distributed over {+1,−1}.

Throughout this paper, we make the following assumptions:

Assumption 2.1. X satisfies coherence property C(A0). In addition, ∥X∥max√
n

≤ A0 ·
(log(p))−1. These two conditions are equivalent to the requirement that the augmented
design matrix M := [X | In] satisfies C(A0).

Assumption 2.2. The vectors β∗ and θ∗ follow a generic s-sparse model and a generic
o-sparse model respectively.

We refer the reader to [3] for an in-depth discussion of the implications of this
assumption. We will only remark here that we do not suppose that the randomness is
inherent to the signs or the support of β∗ and θ∗, rather it is just a tool that allows us to
describe the “typical” scenario.

Assumption 2.3. The inequality
√

s
p

∥∥∥ X√
n

∥∥∥+√ o
n < c√

log(p)
is satisfied for a sufficiently

small absolute constant c > 0.
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While assumption 2.3 can not be verified directly since s and o are unknown, it
gives a good indication of the sparsity and contamination levels that can be tackled
for a given design matrix X . To get a general idea about the restrictiveness of the
last assumption, assume that X has i.i.d. standard normal entries, whence ∥X∥ is of
order

√
p+

√
n and

√
s
p

∥∥∥ X√
n

∥∥∥ ≈
√

s
n . Therefore, if s/n is small, X can have much

larger norm that a typical matrix with i.i.d. entries. More generally, if the rows of X
are sub-Gaussian with an arbitrary covariance matrix Σ such that Σj,j = 1 for all j,
then ∥X∥ ≤ C∥Σ∥1/2

√
n+

√
p with high probability [this can be easily deduced from

results by 8, 14]. These examples show that s and o can be as large as O(n/ log p).

2.1. Noiseless model

Our first result applies to the simpler framework where the dense noise ξ is absent:

Y = Xβ∗ +
√
nθ∗. (3)

In this case, we replace Lasso with the following constrained ℓ1-minimization problem:

min
β̄∈Rp,θ̄∈Rn

∥β̄∥1 + ∥θ̄∥1

subject to Y = Xβ̄ +
√
nθ̄.

(4)

Theorem 2.1. There exist absolute constants C1, c2 > 0 with the following property:
with probability at least 1− C1p

−c2 , (β∗,θ∗) is the unique solution of the problem (4).

The proof of this result, formally given in section E.1 of the supplement, is based
on the analysis of random matrices obtained by sampling the columns of X . Our main
technical contribution is the extension of the tools introduced in [12] to the case of
non-uniform sampling of columns.

2.2. The general model

Next, we consider the general model Y = Xβ∗ +
√
nθ∗ + ξ and the estimator (1).

Note that, without loss of generality, we can and will assume that θ∗,j ̸= 0 ⇐⇒ ξj = 0
(to see this, note that we can redefine the vector of outliers via θ′

∗,j := θ∗,j + ξj/
√
n if

both are non-zero). The following is our most general result.

Theorem 2.2. Suppose that assumptions (2.1), (2.2) and (2.3) hold with A0 ≤ 1/16.
Then there exist absolute constants Cj , cj > 0, j = 1, . . . , 3 such that

1

n

∥∥∥X (
β̂L − β∗

)∥∥∥2
2
≤ C1σ

2 s log(p)

n

+ C2σ
2

(∥∥∥∥ X√
n

∥∥∥∥
max

(s+ o)2 log(p)

n
∧ o log(p)

n

)
(5)

with probability at least 1− C3p
1−c3/A0 whenever λ ≥ 4

√
2(log(p) + log(n))/n.

Remark 2.3. The constant c3 in the statement above can be chosen to satisfy c3 ≥ 1/4,
whence 1− c3/A0 ≤ −3.
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It is easy to see that the quantity
∥∥∥ X√

n

∥∥∥
max

(s+o)2 log(p)
n is the leading term con-

trolling the dependence of the predictio risk on o whenever
∥∥∥ X√

n

∥∥∥
max

≪ 1
s∨o . In the

best case scenario,
∥∥∥ X√

n

∥∥∥
max

is of order O(n−1/2), whence the necessary conditions
for our bound to yield improvements over the standard Lasso analysis take the form
max(s, o) ≪

√
n. The situation can be significantly better if the additive dense noise ξ

is “small” compared to the magnitude of the outliers θ∗ and the regression coefficients
β∗. We describe this favorable scenario next.

Theorem 2.4. Suppose that assumptions (2.1), (2.2) and (2.3) hold. In addition, suppose
that the maximal standard deviation σ of the additive noise vector satisfies

σ ≤ 2

35

√
n

log(pn)
min

(
min
i∈S

|β∗i|,min
i∈O

|θ∗i|
)
. (6)

Then, whenever λ ≥ 4
√
2(log(p) + log(n))/n, the estimator (1) satisfies the inequality

1

n

∥∥∥X (
β̂L − β∗

)∥∥∥
2
≤ C1σ

2 s log(p)

n
(7)

with probability at least 1−C2p
1−c/A0 for absolute constants C1, C2 > 0 and c ≥ 1/4.

In other words, the prediction error does not depend on the number of outliers as
long as the regression coefficients and these outliers are large relative to the typical
magnitude of the dense additive noise. Let us remark that condition 6 does not preclude
the coefficients of θ∗ from being small: indeed, in the generic o-sparse mode, θ∗j is a
sub-Gaussian random variable for each j with standard deviation

∣∣θ∗j∣∣. Therefore, if√
n
∣∣θ∗j∣∣ is small, we can simply treat it as an element of the vector ξ. In other words,

condition 6 can be viewed as a requirement on the existence of a partition of the outliers
into sets of elements with “large” and “small” magnitude so that the inequality 6 is valid.
Theorem 2.4 is a corollary of the well-known fact that Lasso is able to recover the sign
pattern and the locations of non-zero elements of the unknown coefficients if they are
sufficiently large. In the framework considered above, this fact is formally stated below.

Theorem 2.5. Under the assumptions of Theorem 2.4,

supp(β̂L) = supp(β∗), sign(β̂L,i) = sign(β∗,i) ∀i ∈ S

supp(θ̂) = supp(θ∗), sign(θ̂, j) = sign(θ∗,j) ∀j ∈ O,
(8)

and ∥β̂−β∗∥∞ ≤ 3.5λ, ∥θ̂−θ∗∥∞ ≤ 3.5λ, with probability at least 1−Cp1−c/A0

for some absolute constants C > 0 and c ≥ 1/4.

Remark 2.6. We showed that the Lasso estimator admits strong performance guarantees
in the presence of gross measurement errors and dense additive noise for most “typical”
vectors of outliers and regression coefficients when the design is moderately correlated.
While our results are not uniform, they hold under mild assumptions and can shed
light on the success of Lasso observed by the practitioners. It would be interesting to
understand whether it is possible to deduce optimal performance guarantees without
additional assumptions on the magnitude of the quantities involved.
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Supplementary Material
The Impact of Contamination and Correlated Design on

the Lasso: an Average Case Analysis

A. Double rejective sampling and Poissonization

First, let us recall the definition of the Poisson sampling.

Definition A.1. (Poisson Sampling) Let δ1, . . . , δK be a sequence of K independent
Bernoulli random variables with success probabilities p1, . . . , pK such that

∑K
j=1 pj =

S, where S is a positive integer. We say the the random set I follows the Poisson
sampling model if

I
d
= {i | δi = 1}

where d
= denotes equality in distribution. It is easy to see that for any I ⊆ [K],

P(I = I) =
∏
i∈I

pi
∏
j ̸∈I

(1− pj).

Furthermore, assume that K = K1 +K2 and define

I1 := {i | δi = 1, i = 1, . . . ,K1}, I2 := {i | δi = 1, i = K1 + 1, . . . ,K} (9)

Then I1 and I2 are independent random sets. Assume that S < K1 ∧K2. Similar
to the rejective sampling model used by [6], we define a model to accommodate to our
needs.

Definition A.2. (Double Rejective Sampling) Let δ1, . . . , δK denote a sequence of
K = K1 + K2 independent Bernoulli random variables with success probabilities
pj , j = 1, . . . ,K such that

∑K1

j=1 pj = S1 ∈ N,
∑K

j=K1+1 pj = S2 ∈ N, and
denote by P the probability measure of the corresponding double Poisson sampling
model. We say a random set follows a double rejective sampling model with parameters
(K1,K2, (pi)

K
i=1) if for all I = I1 ∪ I2 ⊂ [K] is chosen with the following probability

PS1,S2
(I) := P(I | |I1| = S1, |I2| = S2)

=

{
c′
∏

i∈I pi
∏

j ̸∈I(1− pj) if |I1| = S1, |I2| = S2

0 otherwise.

Recall the following lemma that is proven in [6, Lemma 7]. Recall that [K] :=
{1, . . . ,K} and let P(I) denotes the power set of I.

Lemma A.1. Let f : P([K]) → {0, 1} be such that for all I,J ∈ P([K]),

f(I) ≤ f(J ) if I ⊆ J .

Then for 0 ≤ T ≤ K − 1 we have

P(f(I) = 1 | |I| = T ) ≤ P(f(I) = 1 | |I| = T + 1)
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The next lemma states that probabilities with respect to the double rejective sampling
model can be controlled in terms of the probabilities associated with the Poisson
sampling process. Therefore, we can use the Poisson sampling model whenever it is
convenient, and the bound of the lemma allows to automatically transfer the results to
the case of double rejective sampling.

Lemma A.2. The following inequality holds: PS1,S2
(f(I) = 1) ≤ 4P(f(I) = 1).

Proof. Note that

P(f(I) = 1)

=

K1∑
k1=0

K2∑
k2=0

P(f(I) = 1 | |I1| = k1, |I2| = k2)× P(|I1| = k1, |I2| = k2)

≥
K1∑

k1=S1

K2∑
k2=S2

P(f(I) = 1 | |I1| = k1, |I2| = k2)× P(|I1| = k1)P(|I2| = k2)

≥ P(f(I) = 1 | |I1| = S1, |I2| = S2)×
K1∑

k1=S1

P(|I1| = k1)

K2∑
k2=S2

P(|I2| = k2)

= PS1,S2(f(I) = 1) · P(|I1| ≥ S1) · P(|I2| ≥ S2) ≥
1

4
PS1,S2(f(I) = 1),

where the first inequality comes from the independence of I1 and I2, the second one
comes from Lemma A.1 and the last one is implied by the fact that if the mean number
of successes of K independent trials is an integer S, the median is also S [proved by
5].

B. Norms of random submatrices

Let Assumption 2.1 and Assumption 2.2 be satisfied. Moreover, let the set I ⊆
[p+ n] be selected according to the double rejective sampling model with parameters
K1 = p and K2 = n, pj = s/p for j = 1, . . . , p and δj = o/n for j = p+1, . . . , p+n.
We let M I stand for the submatrix of M with columns indexed by I = S ∪ O, and
XS be the corresponding submatrix of X indexed by S. Then we have the following
bounds.

Lemma B.1. With probability at least 1− p−2 log(p),

∥(X⊤
SXS/n)

−1∥ ≤ 2. (10)

Moreover, with probability at least 1− Cp1−1/(4A0),

∥(M⊤
I MI/n)

−1∥ ≤ 2. (11)

To prove these bounds, let us define, for any I ∈ [p+ n],

f(I) = 1{∥M⊤
I MI/n− Is+o∥ ≥ r}
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where r ∈ (0, 1). In view of Lemma A.2 we have that

PS1,S2(∥M
⊤
I MI/n− Is+o∥ ≥ r) ≤ 4P(∥M⊤

I MI/n− Is+o∥ ≥ r). (12)

The following two lemmas are among the key technical results of the paper.

Lemma B.2. Assume I ⊂ [p+ n] is chosen according to the double rejective sampling
model with K1 = p,K2 = n, S1 = s and S2 = o. Then, if√

s/p∥X/
√
n∥+

√
o/n ≤ c/

√
log(p)

for c ∈ (0, 1/8e2) and 2A0 < 1, then ∥M⊤
I MI/n − Is+o∥ < r with probability at

least 1− Cp1−1/(4A0) for some positive constant r ∈ (0, 1), C.

Note that an immediate implication is that whenever the inequality of Lemma B.2
holds, ∥MI/

√
n∥ >

√
1− r.

Lemma B.3. The following inequality holds with probability at least 1− p−2 log 2:

max
i∈Sc

∥X⊤
SXi/n∥2 ≤ C1 · (

√
log(p))−1. (13)

Moreover, maxi∈Ic ∥M⊤
I M i/n∥2 ≤ C2 · (

√
log(p))−1 with probability at least 1−

p1−1/A2
0 .

The proofs of Lemmas B.2 and B.3 are given in the supplementary material.

C. Essential technical lemmas

Recall that λ ≥ 4σ
√

2(log(p)+log(n))
n .

Lemma C.1. With probability at least 1− 2p−1,∥∥∥∥∥X⊤ξ

n

∥∥∥∥∥
∞

≤ 2σ

√
2 log(p)

n
. (14)

Moreover, with probability at least 1− 4p−1∥∥∥∥∥M⊤ξ

n

∥∥∥∥∥
∞

≤ 2σ

√
2(log(p) + log(n))

n
=

√
2

2
λ (15)

as long as n ≥ 5.

Proof. Note that
∥M⊤ξ∥∞ = ∥X⊤ξ∥∞ +

√
n∥ξ∥∞

Since the noise ξ consists of i.i.d sub-Gaussian entries with variance at most σ2,

P
(
max
i∈[n]

|ξi| > σ
√
2(log n+ t)

)
≤ 2e−t

9



Take t = log(p), we have with probability at least 1− 2p−1,

∥ξ∥∞ = max
i∈[n]

|ξi| ≤ 2σ
√

log(p) + log(n)

Since ∥X⊤ξ∥∞ = maxi∈[p] |X⊤
i ξ| and for each i, X⊤

i ξ is a sub-Gaussian random
variable with variance at most ∥Xi∥2σ2 = nσ2, with probability at least 1 − 2p−1,
∥X⊤ξ∥∞ ≤ 2σ

√
n log(p).

Next, we will establish the so-called “complementary size” [4] condition for the
augmented design matrix.

Lemma C.2. With probability at least 1− Cp−c(A0),

1

n
∥M⊤

IcMI(M
⊤
I MI)

−1M⊤
I ξ∥∞ + 2λ∥M⊤

IcMI(M
⊤
I MI)

−1 sign(βI)∥∞

≤ 1

2
λ (16)

for some absolute constant C and c(A0) such that c(A0) → ∞ as A0 → 0.

Proof. For each i ∈ Ic, let

Wi = (M⊤
I MI)

−1M⊤
I M i,W

′
i = MI(M

⊤
I MI)

−1M⊤
I M i.

Define the event E via

E = {max
i∈Ic

∥M⊤
I M i/n∥2 ≤ c1(

√
log(p))−1} ∪ {∥M⊤

I MI/n)
−1∥ ≤ 2} (17)

for some absolute constant c1. Previously, we have shown that

P(E) ≥ 1− C0p
−c0

for some constants C0, c0 depending on A0 appearing in the coherence condition. Then
on the event E, ∥MI(M

⊤
I MI/n)

−1∥ ≤
√
2n and for each i ∈ Ic,

max
i∈Ic

∥Wi∥2 ≤ ∥(M⊤
I MI/n)

−1∥max
i∈Ic

∥M⊤
I M i/n∥2 ≤ (c2

√
log(p))−1 (18)

and

max
i∈Ic

∥W ′
i∥2 ≤ ∥MI(M

⊤
I MI/n)

−1∥max
i∈Ic

∥M⊤
I M i/n∥2 ≤

√
n(c′2

√
log(p))−1.

(19)
Therefore, by Hoeffding’s inequality, for each i and t > 0, u > 0,

P(|⟨Wi, sign(θI)⟩| > t | E) ≤ 2e
− t2

2
∑

j∈I(Wi)
2
j

≤ 2e−t2/2maxi ∥Wi∥2
2

≤ 2e−c22t
2 log(p)/2 = p−c22t

2/2

(20)

10



and

P(|⟨W ′
i , ξ⟩| >

√
nu | E) ≤ 2e

− nu2

2
∑

j∈I(W ′
i
)2
j

≤ 2e−nu2/2maxi ∥W ′
i∥

2
2

≤ 2e−c′2u
2 log(p)/2 = p−c′22 u2/2.

(21)

Union bound implies that

P(∥⟨Wi, sign(θI)⟩∥∞ > t | E) ≤ 2(n+ p− s− o)p−c2t
2/2 ≤ 4p1−c22t

2/2 (22)

and

P(∥⟨W ′
i , ξ)⟩∥∞ >

√
nu | E) ≤ 2(n+ p− s− o)p−c′2u

2/2 ≤ 4p1−c′22 u2/2. (23)

Take t = 1/8 and u = 1/4, and note that with probabilities at least 1−4p1−c22t
2/2−P(E)

and 1− 4p1−c′22 u2/2 − P(E) respectively,

∥M⊤
IcMI(M

⊤
I MI)

−1 sign(γI)∥∞ = max
i∈Ic

⟨Wi,γI⟩ ≤
1

8
(24)

and
1

n
∥M⊤

IcMI(M
⊤
I MI)

−1M⊤
I ξ∥∞ = max

i∈Ic
⟨W ′

i , ξ⟩ ≤
1

4
λ. (25)

Finally, we have that

P({∥⟨Wi, sign(θI)⟩∥∞ > 1/8} ∪ {∥⟨W ′
i , ξ⟩∥∞ > 1/4λ})

≤ P({∥⟨Wi, sign(θI)⟩∥∞ > 1/8} ∪ {∥⟨W ′
i , ξ⟩∥∞ > 1/4λ} | E) + P(Ec)

≤ P({∥⟨Wi, sign(θI)⟩∥∞ > 1/8} | E) + P({∥⟨W ′
i , ξ⟩∥∞ > 1/4λ} | E) + P(Ec)

≤ 1− C3p
−c3

(26)
for some positive constant C3 and c3.

Lemma C.3. Let ΠJ be the projection matrix onto the space spanned by the columns
of MI .

∥(M⊤
I MI)

−1M⊤
I ξ∥∞ ≤ λ/2,

∥M⊤
Ic(I−ΠJ )ξ/

√
n∥∞ ≤ λ

with probability at least 1− C1p
−C2 − p−1 for some positive constants C1 and C2.

Proof. In the proof of Lemma C.2 we showed that ∥(M⊤
I MI)

−1M⊤
I ∥ ≤

√
2 with

probability at least 1−C1p
−C2 for some positive constant C1, C2. For each i ∈ I define

Ui to be the i-th row of (M⊤
I MI)

−1M⊤
I , maxi∈I ∥Ui∥2 = maxi∈I ∥e⊤i (M

⊤
I MI)

−1M⊤
I ∥2 ≤

∥(M⊤
I MI)

−1M⊤
I ∥ ≤

√
2.

Then Hoeffding’s inequality gives that

P(|⟨Ui, ξ⟩| > λ/2) ≤ 2e−λ2/8∥Ui∥2
2

≤ 2e−λ2/8maxi∈I ∥Ui∥2
2 ≤ 2p−2

11



and the union bound yields that with probability at least 1− (s+ o)p−2,

∥(M⊤
I MI)

−1M⊤
I ξ∥∞ = max

i∈I
|⟨Ui, ξ⟩| ≤ λ/2.

For the other term, ∥M⊤
Ic(I − ΠI)ξ/

√
n∥∞ = maxi∈Ic((I − ΠI)M i)

⊤ξ/
√
n =:

maxi∈Ic U ′
i , each U ′

i is a sub-Gaussian random variable with variance at most ∥(I−
ΠI)M i/

√
n∥22 ≤ ∥M i/

√
n∥22 = 1. Therefore, with probability at least 1 − 2p−2,

U ′
i ≤ 4

√
2 log(p)/n and by the union bound,

∥M⊤
Ic(I−ΠI)ξ/

√
n∥∞ ≤ λ,

with probability at least 1− 4p−1 > 1− 2(n+ p− s− o)p−1.

Lemma C.4. With probability at least 1− 2(s+ o)p−1 − p1−c/A0 ,

∥(M⊤
I MI/n)

−1 sign(γI)∥∞ ≤ 2.5,

where c > 0 is an absolute constant.

Proof. Notice that

∥(M⊤
I MI/n)

−1 sign(γI)∥∞ ≤ ∥ sign(γI)∥∞ + ∥((M⊤
I MI/n)

−1 − Is+o) sign(γI)∥∞
= 1 +max

i∈I
⟨Wi, sign(γI)⟩,

where Wi is the i-th row of the matrix (M⊤
I MI/n)

−1 − Is+o. Define A := Is+o −
M⊤

I MI , then
(M⊤

I MI/n)
−1 =

∑
k≥0

Ak, A0 = Is+o

Wi = ((M⊤
I MI/n)

−1 − Is+o)ei =
∑
k>0

Akek

∥Wi∥ ≤
∑
i>0

∥Akei∥ ≤ ∥Aei∥
∑
k≥0

∥A∥k =
∥Aei∥
1− ∥A∥

≤ 2∥Aei∥

last inequality coming from the proof of Lemma B.1 where we showed that with
probability at least 1 − Cp1−1/(4A0), ∥A∥ < 1/2. Recall in the proof of Lemma B.1
we defined H = M⊤M/n− In+p. Then A = HI . Combining inequality (12) with
Lemma 21 in [6], we deduce that

PS1,S2(∥A∥∞,2 > (log(p))−1/2) ≤ 4(n+ p)(e log(p)∥HW∥2∞,2)
1

µ2 log(p) . (27)

Recall that in Section B we showed that ∥HW∥∞,2 ≤
√

s
p∥X∥+

√
o
n < c1(log(p))

−1/2,

moreover, we have also assumed that µ = µ(X) ≤ A0 · (log(p))−1. Therefore

max
i∈I

∥Aei∥ = ∥A∥∞,2 ≤ (log(p))−1/2

with probability at least 1 − Cp1−1/(A2
0 log(p)). Repeating to the proof of bound (24),

we can show that whenever maxi ∥Wi∥ ≤ 2(log(p))−1/2,

max
i∈I

⟨Wi, sign(γI)⟩ ≤
√
2 < 1.5 (28)

with probability at least 1− 2(s+ o)p−1.
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D. Proof of Lemma B.2

Proof. The result for the simple rejective sampling model that yields the inequality
(10) was proved by [4]. To extend the result to the double rejective sampling case
needed to prove (10), define the hollow Gram matrix H := M⊤

I MI/n − In+p and
the weight matrix W := diag

(
(
√
pi)

p+n
i=1

)
. Notice that M/

√
n has columns of norm

1, we can combine inequality (12) with proof of Corollary 4 in [6] to deduce that for all
r ≥ 2e2∥WHW ∥,

PS1,S2
(∥M⊤

I MI/n− In+p∥ ≤ r) ≤ C · p · exp

(
−min

{
r2

4e2∥HW∥2∞,2

,
r

2µ

})
(29)

where C < 103 is a positive constant and ∥ · ∥∞,2 is the maximum ℓ2 norm of a row.
Recall µ = µ(X) ≤ A0 · (log(p))−1. In our case,

HW =

√ s
p (X

⊤X/n− Ip)
√

o
nX

⊤/
√
n√

s
pX/

√
n 0

 ,

WHW =

 s
p (X

⊤X/n− Ip)
√

so
pnX

⊤/
√
n√

so
pnX/

√
n 0

 .

Then, since ∥Xi/
√
n∥ = 1 for each column of X ,

∥X⊤X/n− Ip∥∞,2 = max ∥X⊤
i X/n− ei∥2 ≤ max ∥Xi/

√
n∥∥X/

√
n∥+ 1

= ∥X∥/
√
n+ 1. (30)

and ∥X∥∞,2/
√
n ≤ ∥X∥/

√
n. Therefore,

∥HW ∥∞,2 ≤
√

s

p
∥X⊤X/n− Ip∥∞,2 +

√
o

n
∥X⊤∥∞,2/

√
n

≤ 2

(√
s

p
∥X∥/

√
n+

√
o

n

)
. (31)

For WHW = W (M⊤M/n)W −W 2, we see that

W (M⊤M/n)W =

 s
pX

⊤X/n
√

so
pnX

⊤/
√
n√

so
pnX/

√
n o

nIp

 ⪰ 0.

In view of Corollary 3.5 in [2],

W (M⊤M/n)W /n ≤ s

p
∥X⊤X∥/n+

o

n
=

s

p
∥X∥2/n+

o

n
.

13



On the other hand, W 2 is a diagonal matrix with first p diagonal entries equal to s/p
and last n diagonal entries equal to o/n. By Weyl’s inequality,

∥WHW ∥ ≤ ∥W (M⊤M/n)W ∥+ λmin(−W 2) ≤ ∥W (M⊤M/n)W ∥.

Equation (29) is equivalent to stating that with probability at least 1− C · pe−t,

∥M⊤
I MI/n− Is+o∥ ≤ max(2e

√
t∥HW ∥∞,2, 2tµ)

≤ max

(
2e
√
t

(√
s

p
∥X∥/

√
n+

√
o

n

)
,
2tA0

log(p)

)
. (32)

Set r = max
(
2e
√
t
(√

s
p∥X∥+

√
o
n

)
, 2tA0

log(p)

)
and t = c · log(p). If

√
s

p
∥X/

√
n∥+

√
o

n
<

√
cA0

e
√
log(p)

(33)

and c < 1/(2A0), then r = 2tA0

log(p) < 1 and with probability at least 1 − C · p1−c,

∥M⊤
I MI − Is+o∥ ≤ r. We need c > 1 for p1−c to be small, thus require A0 < 1/2.

We still need to ensure that r < 1 for r ≥ 2e2∥WHW ∥. A sufficient condition is
2e2∥WHW ∥ < 1, which is satisfied if we require that s

p∥X∥2/n+ o
n < c′ for some

c′ ≤ 0.125e−2.
In particular, taking r = 1/2 and t = 1

4A0
log(p), we have that with probability at

least 1− Cp1−1/(4A0), ∥(M⊤
I MI/n)

−1∥ ≤ 2 given that A0 ≤ 1/4.

E. Proofs

In this section, we state the main technical results related to the norms of matrices
obtained by choosing the random columns of the augmented design matrix

M :=
[
X

√
nI
]
.

Then we explain the implications of these bounds for the Lasso.

E.1. Proof of Theorem 2.1

Recall that M = [X |
√
nI], and denote γ = (β∗

⊤,θ∗
⊤)⊤. Moreover, let I stand

for the support of γ. Then Y = Mγ, and we need to show that γ is the unique solution
to the problem

min
γ̄∈Rp+n

∥γ̄∥1 subject to Y = Mγ̄. (34)

We will apply the following lemma.

Lemma E.1 (Lemma 3.2 in [3]). Assume that∥∥∥∥(M⊤
I MI/n

)−1
∥∥∥∥ ≤ 2, max

i∈Ic

∥∥∥M⊤
I M i/n

∥∥∥
2
≤ 1. (35)

14



Suppose there exists v ∈ Rn+p in the row space of M obeying the inequalities

∥vI − sign (γI)∥2 ≤ 1/4, ∥vIc∥∞ ≤ 1/4. (36)

Then γ is the unique solution to problem (34).

In section (B), we showed in particular that conditions (35) hold with probability at
least 1− C1p

−c1 for some positive constants c1, C1. Next, let

v =
(
M⊤MI/n

)(
M⊤

I MI/n
)−1

sign(γI) ∈ Rn+p. (37)

We want to show that v satisfies relations (36) with high probability. Let E be the event
on which inequalities (35) hold. On this event, M⊤

I MI is invertible and

vI = M⊤
I MI

(
M⊤

I MI

)−1

sign(γI) = sign(γI),

vIc = M⊤
IcMI

(
M⊤

I MI

)−1

sign(γI)

(38)

For each i ∈ Ic, define W i =
(
M⊤

I MI

)−1

M⊤
I M i. Moreover, on E

∥W i∥2 =

∥∥∥∥(M⊤
I MI

)−1

M⊤
I M i

∥∥∥∥
2

≤
∥∥∥∥(M⊤

I MI

)−1
∥∥∥∥∥∥∥M⊤

I M i

∥∥∥
2

≤ C1/
√
log(p), (39)

where we used the relations ∥(M⊤
I MI)

−1∥ ∈ (1/2, 3/2) and ∥M⊤
I M i∥2 ≤ C/ log(p).

Recall that in the generic sparse model, the signs of the entries of γ are iid
Rademacher random variables. In view of this fact, Hoeffding’s inequality gives that

P (|⟨W i, sign(γI)⟩| > t|E) ≤ 2e
− t2

2
∑

j∈I(W i)
2
j

≤ 2e−t2/2maxi ∥W i∥2
2 ≤ 2e−c22t

2 log(p)/2 = p−c22t
2/2. (40)

Taking t = 1/4 and applying the union bound, we deduce that

∥vIc∥∞ = max
i∈Ic

〈(
M⊤

I MI

)−1

M⊤
I M i, sign(γ)

〉
≤ 1/4 (41)

with probability at least 1− 2(n+ p− s− o)p−c2t
2/2 ≥ 1− 4p1−c22t

2/2.

E.2. Proof of Theorem 2.5

Recall the definitions of M and γ, and let Γ = γ̂−γ, where γ̂ is the solution to the
augmented Lasso problem minγ̄

1
2n∥Y −Mγ̄∥22 + λ∥γ̄∥1. Recall that S = supp(β∗),

O = supp(θ∗) and I = S ∪ O. Inspired by the idea of Wainwright [7], we want to
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show that under our assumptions, the solution of the Lasso problem restricted to the
supports of β∗ and θ∗ defined via

γ̆I ∈ arg min
γI∈Rs+o

1

2n
∥y −MIγI∥22 + λ∥βS∥1 + λ∥θO∥1 (42)

is indeed the non-zero part of the solution to the original, unrestricted Lasso problem.
Moreover, we will show that for each non-zero element γi, if |γi| > τ for some
threshold τ to be determined later, then sign(γ̆i) = sign(γi).

Karush-Kuhn-Tucker (KKT) optimality conditions imply that for any z ∈ ∂∥γ̂∥1,
−M⊤(y −Mγ̂)/n+ λ⊗ z = 0 which yields the relation

1

n
M⊤M(γ̂ − γ)− 1

n
M⊤ξ + λ⊗ z = 0 (43)

where ⊗ represents the element-wise multiplication.
We want to show that the vector (γ̂I ,0) satisfies the KKT conditions. We can write

equation (43) in a block form:

1

n

[
M⊤

I MI M⊤
I MIc

M⊤
IcMI M⊤

IcMIc

] [
γ̂I − γI

0

]
− 1

n

[
M⊤

I ξ

M⊤
Icξ

]
+ λ⊗

[
zI
zIc

]
= 0 (44)

Lemma E.2. Define z̆ ∈ Rs+o via

z̆i =

{
sign(γi), i ∈ I
1
λ ⟨MIΓ̆I ,M i⟩ − 1

λnM
⊤
i ξ, i ∈ Ic

. (45)

. Then ∥z̆Ic∥∞ < 1 with probability at least 1− Cp1−cA0 for some constants C, c.

Therefore, with high probability ∥z̆Ic∥∞ < 1, which implies that with the same
high probability, z̆ ∈ ∂∥γ̂∥1 and the solution of the Lasso problem is γ̂ = (γ̆I ,0), and
z̆ ∈ ∂∥γ̂∥1. Moreover, supp(γ̂) ⊆ supp(γ).

Define Γ̆ via

Γ̆I := (M⊤
I MI/n)

−1

(
1

n
M⊤

I ξ − λI ⊗ z̆I

)
(46)

Note that Γ̆ is the candidate for the error vector γ̂ − γ. Finally, let us determine the
threshold τ . The main idea is that whenever the non-zero coefficient satisfies |γi| > τ ,
then |γ̂i| = |γi + Γ̆i| > 0 and sign(γi) = sign(γ̂i). We have that

∥Γ̆I∥∞ ≤ ∥(M⊤
I MI)

−1MIξ∥∞ + λ

∥∥∥∥(M⊤
I MI/n)

−1

[
sign(γI)

0

]∥∥∥∥
∞

≤ 5
√
2/8λ+ 2.5λ < 3.5λ.

(47)

Therefore, if τ ≥ 3.5λ, then the sign consistency holds.
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E.3. Proof of Theorem 2.4
Let ∆ = β̂ − β. Then Theorem 2.5 implies that supp(∆) = S. Therefore, on the

event E := {∥X⊤
SXS/n∥ ∈ (1/2, 3/2)} ∪ {∥β̂ − β∥∞ ≤ 3.5λ},

1

n
∥X(β̂ − β)∥2 ≤ ∥X⊤

SXS/n∥∥(β̂ − β)S∥22 ≤ 3

2
s∥β̂ − β∥2∞

≤ 3

2
s(3.5λ)2 ≤ 147

8
sλ2

s. (48)

In sections (B) and (E.2), we proved that event E occurs with probability at least
1− C2p

1−c/A0 . This implies the claim of the theorem.

E.4. Proof of Lemma B.3
Proof. The first inequality follows from the results in [4]. To prove the second bound,
we first notice that

max
i∈Ic

∥M⊤
I M i/n∥ ≤ ∥(M⊤M/n− In+p)I∥∞,2 (49)

where ∥ · ∥∞,2 is the maximum ℓ2 norm of a row of a matrix. Next, we will need the
following corollary of Lemma 6 in [6].

Lemma E.3. Let H ∈ Rd×K . Assume that I is chosen according to the double
rejective sampling model with probabilities p1, . . . , pK such that

∑K
i=1 pi = S, W =

diag
(
(
√
pi)

K
i=1

)
. Then for all v > 0,

PS1,S2

(
∥HI∥∞,2 ≥ v

)
≤ 4K

(
e
∥HW ∥2∞,2

v2

) v2

µ2

. (50)

In our case, d = n+ p,K = n+ p,H = M⊤M/n− In+p and

HW =

√ s
p (X

⊤X/n− Ip)
√

o
nX

⊤/
√
n√

s
pX/

√
n 0

 .

Therefore, since each column of X has norm
√
n,

∥X⊤X/n− Ip∥∞,2 = max
i∈[p]

∥X⊤
i X/n− ei∥2 = max

i∈[p]
∥X⊤

i X/n∥2

≤ max
i∈[p]

∥Xi/
√
n∥∥X/

√
n∥ = ∥X/

√
n∥. (51)

Combined with the fact that ∥X∥∞,2 ≤ ∥X∥, we have

∥HW ∥∞,2

≤ max

(∥∥∥∥√s

p
(X⊤X/n− Ip)

∥∥∥∥
∞,2

+

∥∥∥∥√ o

n
X⊤/

√
n

∥∥∥∥
∞,2

,

∥∥∥∥√s

p
X/

√
n

∥∥∥∥
∞,2

)

≤ max

(√
s

p
∥X/

√
n∥+

√
o

n
,

√
s

p
∥X/

√
n∥
)

≤
√

s

p

∥∥∥∥ X√
n

∥∥∥∥+√ o

n
.
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Now take v := e(
√
s/p∥X/

√
n∥+

√
o/n) and recall that in view of assumption (2.2),

µ ≤ A0/ log(p) and
√
s/p∥X/

√
n∥+

√
o/n+ ≤ c/

√
log(p), so that

PS1,S2

(
max
i∈Ic

∥M⊤
I M i/n∥ ≥ e

(√
s

p

∥∥∥∥ X√
n

∥∥∥∥+√ o

n

))
≤ 4(n+ p) exp

(
−e2µ−2

(√
s

p

∥∥∥∥ X√
n

∥∥∥∥+√ o

n

)2
)

≤ 8 exp(log(p)− e2(log(p))2A−2
0 · c2(log(p))−1) ≤ 8p1−e2c2/A2

0 .

(52)

In other words, with probability at least 1 − 8p1−e2c2A−2
0 , maxi∈Ic ∥M⊤

I M i/n∥ ≤
ec/
√

log(p). Take c = 1/16e to deduce that

PS1,S2

(
max
i∈Ic

∥M⊤
I M i/n∥ ≥ 1

16
(
√

log(p))−1

)
≤ p1−(A0)

−2/128. (53)

This probability is small because previously we require that A0 < 1/16.

E.5. Proof of Theorem 2.2

Proof. Without loss of generality, we will assume that σ2 = 1.
Define ∆ = β̂ − β∗ and Θ = θ̂ − θ∗. Since β̂ solves problem (1), we have the

inequality

1

2n
∥Y −Xβ̂ −

√
nθ̂∥22 + λ∥β̂∥1 ≤ 1

2n
∥Y −Xβ∗ −

√
nθ̂∥22 + λ∥β∗∥1 (54)

Notice that

∥Y −Xβ̂ −
√
nθ̂∥22

= ∥Y −Xβ∗ −
√
nθ̂ −X(β̂ − β∗)∥22

= ∥Y −Xβ∗ −
√
nθ̂∥22 + ∥X∆∥22 − 2⟨X∆, Y −Xβ∗ −

√
nθ∗ −

√
n(θ̂ − θ∗)⟩

= ∥Y −Xβ∗ −
√
nθ̂∥22 + ∥X∆∥22 − 2⟨X∆, ξ⟩ − 2⟨X∆,

√
nΘ⟩

Plugging this relation in (54) and rearranging terms, we notice that the term ∥Y −
Xβ∗ −

√
nθ̂∥22 cancels out, thus

1

2n
∥X∆∥22 ≤ 1

n
⟨X∆, ξ⟩+ λ(∥β∗∥1 − ∥β̂∥1)−

1√
n
⟨X∆,Θ⟩. (55)

We will estimate the first two terms and the last display separately. First, we recall the
following result due to Candès and Plan [4].

Theorem E.4. Suppose that

Y = Xβ + ξ, β̂ ∈ arg min
β∈Rp

1

2n
∥y −Xβ∥2 + λ∥β∥1.
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Suppose that the matrix X obeys the coherence property, and assume that β is cho-
sen from the generic s-sparse model, ξ has independent sub-Gaussian entries and
s ≤ c0p/

[
∥X∥2 log(p)

]
for some absolute constant c0 > 0. Then when λ =

2
√
2 log(p)/n,

1

2n
∥X∆∥22 ≤ C1σ

2 · λ2 · s (56)

with probability at least 1− 6p−2 log 2 − p−1(2π log(p))−1/2.

The proof of this theorem mainly concerns the following conditions on X and β:

• Invertibility condition: the matrix X⊤
SXS is invertible and∥∥∥∥∥∥

(
X⊤

SXS

n

)−1
∥∥∥∥∥∥ ≤ 2.

• Orthogonality condition: the noise correlation is bounded,∥∥∥∥∥X⊤ξ

n

∥∥∥∥∥
∞

≤ (1/2)λ.

• Complementary size condition: the following inequality holds

1

n
∥X⊤

ScXS(X
⊤
SXS)

−1X⊤
S ξ∥∞ + 2λ∥X⊤

ScXS(X
⊤
SXS)

−1 sign(βS)∥∞

≤ (1/2)λ. (57)

The conditions stated above are proved to hold with high probability in [4]. Notice that
under Assumption 2.1, Assumption 2.2 and Assumption 2.3, and that β∗ in assumed
to come from the generic s-sparse model, the original design matrix and coefficient
vector (X,β) still satisfies these conditions. Therefore for the first two terms on the
right-hand side of the inequality (55), we can repeat the steps of the proof in [4]. Define
v = 1

nX
⊤
S ξ − λ sign(βS), then

1

n
⟨X∆, ξ⟩+ λ(∥β∥1 − ∥β̂∥1)

≤ 1

n
⟨X∆, ξ⟩ − λ(⟨∆S , sign(βS) + ∥∆Sc∥1)

≤ ⟨∆S ,
1

n
X⊤

S ξ − λ sign(βS)⟩ − (1− 1/2)λ∥∆Sc∥1

≤ ⟨∆S , v⟩ − (1− 1/2)λ∥∆Sc∥1

≤ C

∥∥∥∥∥X⊤
SX∆

n

∥∥∥∥∥
∞

· sλ,

(58)
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where the last inequality comes from the following sequence of inequalities due to
Candès and Plan [4] and given here for completeness:

⟨∆S , v⟩ = ⟨(X⊤
SXS)

−1(X⊤
SXS)∆S , v⟩

= ⟨(X⊤
SXS)∆S , (X

⊤
SXS)

−1v⟩
= ⟨X⊤

SX∆, (X⊤
SXS)

−1v⟩ − ⟨(X⊤
SXSc)∆Sc , (X⊤

SXS)
−1v⟩

:= A1 −A2.

(59)

We have that
A1 = ⟨X⊤

SX∆, (X⊤
SXS)

−1v⟩
≤ ∥X⊤

SX∆/n∥∞∥(X⊤
SXS/n)

−1v∥1
≤

√
s∥X⊤

SX∆/n∥∞∥(X⊤
SXS/n)

−1v∥2
≤ s∥X⊤

SX∆/n∥∞∥(X⊤
SXS/n)

−1∥∥v∥∞
≤ 3λss∥X⊤

SX∆/n∥∞

(60)

where the last inequality coming from Lemma C.1 and the bound ∥v∥∞ ≤ (1/2+ 1)λs.
For A2, note that

|A2| = |⟨(X⊤
SXSc)∆Sc , (X⊤

SXS)
−1v⟩|

= |⟨X⊤
ScXS(X

⊤
SXS)

−1v,∆Sc⟩|
≤ ∥∆Sc∥1∥X⊤

ScXS(X
⊤
SXS)

−1v∥∞.

(61)

Due to the complementary size condition (C.2),

∥X⊤
ScXS(X

⊤
SXS)

−1v∥∞

≤ 1

n
∥X⊤

ScXS(X
⊤
SXS)

−1X⊤
S ξ∥∞ + 2λ∥X⊤

ScXS(X
⊤
SXS)

−1 sign(βS)∥∞

≤ (1/2)λs.

(62)

Therefore,
|A2| ≤ 1/2λs∥∆Sc∥1. (63)

Putting together the bounds obtained above, we deduce that

⟨∆S , v⟩ − (1− 1/2)λ∥∆Sc∥1
≤ 3λss∥X⊤

SX∆/n∥∞ + 1/2λs∥∆Sc∥1 − 1/2λs∥∆Sc∥1
≤ 3λss∥X⊤

SX∆/n∥∞.

(64)

We also need the following lemma:

Lemma E.5. The following inequality holds:

1

n
∥X⊤X∆∥ ≤ 3

2
λ+

1√
n
∥X∥max∥Θ∥1. (65)
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Proof. The optimality conditions for the problem (1) give that

− 1

n
X⊤(Y −Xβ̂ −

√
nθ̂) + λ∂∥β̂∥1 = 0 (66)

Substituting Y = Xβ∗ +
√
nθ∗ + ξ into equation (66), rearranging terms and taking

infinity norm of both sides, we have in view of the triangle inequality that
1

n
∥X⊤X∆∥∞ ≤ 1

n
∥X⊤ξ∥∞ +

1√
n
∥X⊤Θ∥∞ + λ∥∂∥β̂∥1∥∞. (67)

By orthogonality condition, with high probability ∥X⊤ξ∥/n ≤ (1/2)λ. The definition
of subgradient gives that the ∥ · ∥∞ norm of any vector in ∂∥β̂∥1 is at most 1. Moreover,

1√
n
∥X⊤Θ∥∞ ≤ 1√

n
∥X∥max∥Θ∥1.

Therefore, inequality (58) yields that
1

n
⟨X∆, ξ⟩+ λ(∥β∥1 − ∥β̂∥1) ≤ C · sλ2 + C · sλ 1√

n
∥X∥max∥Θ∥1. (68)

It remains to check that

− 1√
n
⟨X∆,Θ⟩+ C · sλ 1√

n
∥X∥max∥Θ∥1

≤ 1√
n
|Θ⊤X∆|+ C · sλ 1√

n
∥X∥max∥Θ∥1

≤ 1√
n
∥X∆∥∞∥Θ∥1 + C · sλ∥X∥max∥Θ∥1

≤ 1√
n
∥X∥max∥Θ∥1(∥∆∥1 + C · sλ)

≤ 1√
n
∥X∥max(∥∆∥1 + ∥Θ∥1)2 +

1√
n
C2 · s2λ2.

(69)

where the last inequality is due to the relation that for a, b, c > 0, 2a(b+ c) ≤ a2 + (b+
c)2 ≤ a2 + 2b2 + 2c2 ≤ 2a2 + 2b2 + 2c2 ≤ 2(a+ b)2 + 2c2.

Define MI = [XS |
√
nIO]. Bickel et al. [1] show that whenever λ ≥ cσ

√
log(p)/n,

c > 2
√
2, (∆,Θ) is in the cone of vectors satisfying

∥∆Sc∥1 + ∥ΘOc∥1 ≤ 3(∥∆S∥1 + ∥ΘO∥1)

with probability at least 1− p1−c2 . Therefore,

(∥∆∥1 + ∥Θ∥1)2 ≤ 16(∥∆S∥1 + ∥ΘO∥1)2 ≤ 16(s+ o)

∥∥∥∥[∆S
ΘO

]∥∥∥∥2
2

≤ 16(s+ o)

∥∥∥∥∥∥
(
M⊤M

n

)−1
∥∥∥∥∥∥ · 1n

∥∥∥∥MI

[
∆S
ΘO

]∥∥∥∥2
2

≤ 32(s+ o) · 1
n
∥M(γ̂ − γ)∥22.

(70)
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The last inequality was derived as follows. Denote γI =

[
∆S
ΘO

]
, γIc =

[
∆Sc

ΘOc

]
and let

γ̂I , γ̂Ic be defined similarly. Then

∥M(γ̂ − γ)∥22 = ∥MIγI∥22 + ∥MIcγIc∥22 + 2⟨MIγI ,MIcγIc⟩ (71)

so that
2|⟨MIγI ,MIcγIc⟩| ≤ ∥M(γ̂ − γ)∥22.

Therefore,

∥MIγI∥22 = ∥M(γ̂ − γ)∥22 − ∥MIcγIc∥22 − 2⟨MIγI ,MIcγIc⟩
≤ 2∥M(γ̂ − γ)∥22. (72)

If instead of (X,β), in the previous section we showed that the same conditions
hold for (M ,γ), then we can use Theorem E.4 to derive the fact that the inequality
1
n∥M(γ̂−γ)∥22 ≤ C ′

1σ
2 ·λ2 · (s+o) holds with high probability. Therefore, inequality

(69) implies that

− 1√
n
⟨X∆,Θ⟩+ C · sλ 1√

n
∥X∥max∥Θ∥1 ≤

∥∥∥∥ X√
n

∥∥∥∥
max

(64(s+ o)2λ2 + C2s2λ2)

≤
∥∥∥∥ X√

n

∥∥∥∥
max

C ′(s+ o)2λ2

(73)
for some C ′, hence the result follows.

E.6. Proof of Lemma E.2
Proof. Let i ∈ Ic and recall the definition of Wi = (M⊤

I1
MI1

)−1M⊤
I1
M i and the

event E

E := {max
i∈Ic

∥M⊤
I M i/n∥2 ≤ c1(

√
log(p))−1} ∪ {∥M⊤

I MI/n)
−1∥ ≤ 2}. (74)

In section (B), we proved that event E occurs with high probability and that on E,

max
i∈Ic

∥Wi∥2 ≤ ∥(M⊤
I MI/n)

−1∥max
i∈Ic

∥M⊤
I M i/n∥2 ≤ (c2

√
log(p))−1. (75)

Therefore, for each i ∈ Ic,

z̆i =

〈
Wi,

[
sign(γI)

0

]〉
+M⊤

i ΠI⊥

(
ξ

λin

)
, (76)

where ΠI⊥ = I − ΠI is the projection matrix onto the subspace perpendicular to
column space of MI .

For the first term, we see that∣∣∣∣〈Wi,

[
sign(γI)

0

]〉∣∣∣∣ = ⟨(Wi)I , sign(γI)⟩.
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Employing Hoeffding’s inequality, we see that on event E, for all i and any t > 0,

P (|⟨ (Wi)I , sign(γI)⟩| > t|) ≤ 2e−t2/2∥Wi∥2
2 ≤ 2e−t2/2maxi ∥Wi∥2

2

≤ 2e−c22t
2 log(p)/2 = p−c2t

2/2. (77)

Next, take t = 1/4 and apply the union bound to see that with probability at least
1− 4p1−c22t

2/2 − P(E),

max
i∈Ic

1

|⟨Wi, sign(βI)⟩| ≤
1

4
. (78)

For the second term in (76), since the eigenvalues of projection matrices can be only 0
or 1,

max
i∈Ic

1

∣∣∣∣M⊤
i ΠI⊥

(
ξ

λin

)∣∣∣∣ ≤ ∥∥∥∥M⊤
(
ξ

n

)∥∥∥∥
∞

≤ 5/8 (79)

with probability at least 1− 4p−1 in view of Lemma C.1 in the appendix. We conclude
that for each i ∈ Ic and on the event E

|z̆i| ≤ 1/4 + 5/8 < 1. (80)

F. Numerical Studies

We performed a numerical simulation to illustrate the obtained theoretical results
and demonstrate the robustness of augmented Lasso estimator. We set n = 1000 and
p = 1100, and performed two experiments. For the first experiment, sparsity level
s ∈ {5, 15, 25} and standard deviation of noise ξ is σ = 1. For the second experiment,
sparsity level s = 25 and the noise standard deviation σ ∈ {0.1, 1, 2, 5}. The parameters
of the problem are defined as follows: sample size n = 1000, dimension of the vector
of regression coefficients p = 1100, and the fraction of outliers o/n ∈ (0, 0.15) with
an increment 0.03. The design matrix X has independent rows sampled from the
multivariate normal distribution ∼ N (0,Σ) where Σ has block-diagonal structure
consisting of 5 × 5 identical blocks (220 blocks overall) with off-diagonal elements
equal to 1/ log(p) ≈ 0.14 and diagonal elements being 1. The ℓ2 norm of the columns
of X has been normalized to be

√
n =

√
1000 ≈ 31.62. The optimization problem

(1) was solved using the cvxr package, where the tuning parameter λ is set as λ =
4
√

2(log(p)/n+ log(n)/n) ≈ 0.66. Moreover, (i) the vector of coefficients β and
the vector of outliers θ is drawn from the generic s and o models with magnitudes of
the coefficients having uniform distributions Unif(8, 16) and Unif(16, 32) respectively,
and (ii) the fraction o/n of outliers ranging between 0 and 0.15. The mean squared error
(MSE) was approximated using 10 independent repetitions of the experiment. Results
of the simulation are shown in figure Figure 1 and Figure 2.
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Figure 1: Inspection of the plot reveals that the prediction risk of the standard Lasso (right)
increases as the number of outliers grows, but the risk of a robust version of Lasso grows much
slower, thus confirming the theoretical results of the paper.
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Figure 2: Inspection of the plot reveals that the risk of robust version of Lasso grows linearly
with the noise variance, with nearly exact recovery when noise is close to 0.
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